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A Critical Comparison of Differentiation Algorithms for Transient Well
Test Analysis
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ABSTRACT

Pressure derivative curves are used as a powerful
diagnostic tool in pressure transient well test analysis. In
this paper the performance of various differentiation
algorithms has been evaluated. Various smoothing
procedures to be used in conjunction with differentiation
algorithms are also discussed. Finally the best
combination of smoothing and differentiation algorithms
has been recommended.

INTRODUCTION

Pressure derivative approach is quite well known as a tool
which greatly simplifies the pressure transient well test data
interpretation process. One of the main problems inherent with
the pressure derivative approach is that the rate of change of
pressure, the quantity under consideration, currently cannot
be measured directly and must be extracted from discrete
measurements of the absolute pressure evolution. The
numerical techniques called differentiation algorithms, are
used to evaluate the derivative of the pressure /time data.
These discrete pressure measurements have superimposed
upon them random errors which, regardiess of their source,
are characteristically described as noise. The noise in
pressure / time data makes the differentiation difficult, if not
inconclusive. An attempt to improve the signal to noise ratio
can also distort the signal trend. An ideal differentiation
algorithm must have the ability, besides differentiation, to
suppress the noise (or smoothing) on one side and the degree
of data distortion on the other.

Several algorithms (Bourdet et al., 1983, 1989 and Clark et
al., 1985) have been proposed to obtain the derivative of
pressure/time data. In these studies the authors have
presented brief descriptions of the selected algorithms and
their conclusions. None of them presented the results upon
which their conclusions were based. This missing detail was
the main initiative to undertake work presented in this paper.
The objective of this paper is to evaluate the performance of
available techniques for differentiation and smoothing. It also
includes few techniques which were not introduced by the
above mentioned authors.

Performance of a differentiation algorithm is evaluated by
measuring deviation of computed derivative from the true
derivative of the data. If actual data is used as an example
data, its true derivative is not known. Therefore a modified type
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curve of Agarwal et al. (1970) was used fo evaluate different
methods.

PRELIMINARIES

The term “Pressure Derivative” is a misleading one. In this
section first we will explain the background of this term.
Agarwal et al. (1970) presented a mathematical model for
liquid flow in homogenous porous media towards a well with
constant wellbore storage and skin. They related
dimensionless pressure drop (Pwd) with skin (S),
dimensionless wellbore storage (Cq), and dimensionless time
(tq) as follows:

Puc=(4/7)[ 1-exp(-ta)lgu / y*[uCalo-(1-CaSU 1]
+ [UCdYo-(1-CaSu ) Y1)} 1)

They also presented arelationship for derivative of Pug with
respect to tg as follows;

dPuwd/dta=(4/m%) exp(-uty) dy / U{!UCdJo—('I-CdSUz}Jﬂ?'
+UC4Yo-(1-CaSu)Y1]%} (2)

Where Jn and Yn are the Bessel functions of the first and
second kind of nth order.

Gringarton et al. (1979) presented a type curve which
consists of Pwd, from eguation (1), versus ta/Cq, each curve
being characterized by a value of Cge S One of those curve

is shown in figure 1. Bourdet et al. (1983) took slope of

- Gringarton type curve and called it pressure derivative, as

follows;
slope = dPwd /d[in (t/Cg)]
= (tg/Cq) dPwi/d(ta/Cq)
= tq dPw/dty 3)

It is infact a semilog derivative. The derivative from
equation (2) is called “primary pressure derivative” (Matter and
Zaoral, 1992). Bourdet et al. (1983) presented plots of
pressure derivative versus t3/Cq as “derivative type curves”.
The derivative curve corresponding to the selected
dimensicnless pressure curve is also shown in figure 1.

Appendix 1 presents the example data and resulting
relationships used to describe the selected curves in terms of
real parameters. The resulting curves are shown in Figure 2.
Then noise was introduced into pressure drop curve by shifting
its value at 6.7 hours from 2876.952 psi to 3040 psi {(see Figure
3). This noised data was used as an example data to test
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various differentiation algorithms. The criterion of comparison
consists of following three checks:

Degree of scatter

The algorithm produces in the derivative curve computed
from noised data. The degree of scatter is also an indirect
measurement of the degree of smoothing i.e., larger is the
degree of scattering, lesser is the smoothing. A measure of
degree of scatter can be obtained by the following error
formuila.

Error = X [abs(ideal derivative value - noised
derivative value)/ ideal derivative value] 4)

Shape distortion

The algorithm produces compared to the shape of ideal
derivative curve. A measure of the-shape distortion is
horizontal or vertical shift between the two derivative curves.

Time taken by the algorithm

Discussion and the analysis done in this paper is divided
into three parts. [n part A, algorithms for obtaining pressure
derivative from the above mentioned noised data will be
discussed and the best one will be selected to be used in part
B. In part B, the effect of smoothing algorithms used along
with differentiation algorithm is discussed. Part C is similar to
Part B except that the example data is now a real one instead
of a noised type curve.

DISCUSSION (A)
Weighted Average of Slopes

Bourdet et al. (1983) recommended this algorithm. It uses
one point before and one point after the point of interest,
calculates the corresponding derivatives, and places their
mean at the point considered.

(dP/dX)i = [(Pi-P1)(X2-Xi) / (Xi-X1) + (P2-Pi)(Xi-X1) /
(K2-X)] 1 [(K-X1)+(X2-Xi)] (3)

where
P=p
1 = point before
2 = point after
X = time function
= In t for drawdown data
= In (Horner time) for buildup data

Figure 4 shows the ideal derivative data and derivatives
obtained using this methods for the noised data. It can be
noticed from the figure that the shape is preserved except at
the points adjascent to the noised data point. The degree of
freedom is n-2 where n is number of pressure points.
Cumulative error came out to be 18.83%. On a DX 486
processor, this algorithm took 0.2734 seconds.

Slope of Straight Line

Clark et al. (1985) mentioned this method. This is a ieast
square procedure. It selects a region around the point to be
considered and fits a straight line through the points in the
region. The slope of the resulting straight line is considered as
the pressure derivative at the point under consideration which
is the middle point of the region. Figures 5 to 7 showthe results
for 3, 5 and 7 point regions respectively. It can be seen from
these figures that size of region does not effect the shape of
the derivative curve except the number of derivative points
scattered due to noised pressure point. The number of
scattered derivative points increased with increase in size of
the region. The cumulative error varied inversely to size of the
region. It means even though the number of scattered points
increased with increase in size of the region but the degree of
scafter decreased. Maximum error was 18.83 % while using 3
point region, which is same as the error found in method 1.
The degree of freedom was n-m+1 where m is number of
points in the region. Time taken by this algorithm increased
with the size of the region. The minimum time taken was
0.2695 seconds using 3 point region. Detail results for each
region are presented in Table 1.

Slope of Parabola

Bourdet et al. (1989) described this technique. This is
another least square method which selects a region around
the point to be considered and fits a parabola through the
points in the region. Then exact derivative of the parabola is
used to find the derivative of the point under consideration:.
Figures 8 to 10 show the results for 3, 5 and 7 point regions
respectively. It can be seen from the figures that size of region
does effect the shape of the derivative curve. The distortion in
the shape of derivative curve increase with increase in the size
of the region except the number of derivative points scattered
due to noised pressure point. The number of scattered
derivative points increased with increase in size of the region.
The cumulative error varied directly proportional to the size of
the region. Minimum error was 18.86 % while using 3 point
region. The degree of freedomwas n-rm+1 where mis number
of points in the region. Time taken by this algorithm increased
with the size of the region. The minimum time taken was
3.4589 seconds using 3 point region. Detailed resuits for each
region arepresented in Table 1.
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Table 1. Summary of the results.
METHOD ERROR SHAPE | TIME (sec) NOISE SCATTERED | DEGREE
(%) HANDLING POINT OF
FREEDOM
Weighted 18.83 undisturbed 0.2734 ineffective 2 n-2
Average of
Slopes |
Slope of 18.83 undisturbed 0.2695 ineffective 2 n-2
Straight line
(3 point)
(5 point) 12.43 undisturbed 0.3281 ineffective 4 n-4
(7 point) 10.33 undisturbed 0.3789 ineffective 6 n-6
Slope of 18.86 undisturbed 3.4589 ineffective 2 n-2
Parabola
(3 point)
(5 point) 30.89 disturbed 3.9511 ineffective 5 n-4
(7 point) 39.36 disturbed 4.4492 ineffective 7 n-6
Orthogonal 29.09 undisturbed 0.2187 ineffective 4 n-4
Polynomials
(5 point) .
(7 point) 23.59 undisturbed 0.2695 ineffective 6 n-6
(9 point) 26.39 disturbed 0.2695 ineffective 9 n-8

Orthogonal Polynomial Method

Savitzky and Golay (1964) introduced the application of
orthogonal polynomials in data smoothing and differentiation,
This is basically simplified least square procedure. A region
around the point to be considered is selected and the ordinate
values of the points in the region are convolved with standard
set of integers called convoluting integers. To perform a
convolution of the ordinate numbers of the points in the region
with a set of convoluting integers, each number in the set is
multiplied by the corresponding number in the region, the
resulting products are added and this sum is divided by a
number called normalizing factor. There are two important
restrictions for the application of this method. First the points

must be at a fixed uniform interval in the chosen abscissa.
Second the curves formed by graphing the points must be
continuous and more or less smooth. Figures 11-13 show the
derivative values computed using this method for 5,7 and 9
point regions respectively. Cumulative error decreased first
with enlargement of region from 5 to 7 points but increased
again when the region was enlarged further from points 7- 9.
Shape got disturbed when using 9 point region. The method
takes least time compared the ones required by above
mentioned methods. Degree of freedom decreases with
increase in size of the region. The number of scattered points
increases with the increase in size of the region. So like other
previously mentioned technigues, this method was also
proved ineffective in handling noise in the pressure data.
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ANALYSIS (A)

Table 1 summarizes the results discussed above. It can be
noticed from this table that non of the algorithms discussed
removes the noise while computing derivative. Methods of
fitting parabola and orthogonal polynomials can be rejected
because they disturb the shape of the derivative curve. Method
1 and 2 do not disturb the shape of the derivative curve.
Considering number of scattered points, as another check,
leaves us with the method 1 and the method 2 with 3 point
region. They carry same accuracy. Method 2 with 3 point
region is slightly quicker but method 1 offers the ease of
calculation even without a computer. 1t leads us to select the
method 1 as the best available among the ones discussed.
Signal to noise ratio must be improved before we take
derivative of the signals, because as we have observed,
differentiation algorithm does not do it. Therefore, in section B
various smoothing procedures are discussed in conjunction
with the method 1.

DISCUSSION (B)
Method of non-Adjascent Points

As shown in Equation 3, the pressure derivative is a function
of ratio of change in pressure drop and corresponding time
interval. Modem electronic gauges record pressure points at
high sampling rate (reading every few seconds) i.e., very small
time intervals. So even a little noise superimposed on the
signal will be magnified during differentiation because of
denominator . Bourdet et al. (1989), suggested to choose the
points, where the derivative is calculated, sufficiently distant
from the point under consideration. It increases the time
interval which causes less magnification of noise. It also
increases the corresponding pressure drop which makes the
noise less effective. The minimum distance, (L), considered
between the abscissa of the points and the point under
consideration is expressed in terms of the time function , X,
This methods selects points 1 and 2 as being the first ones
such that A X1 2 L. For present example which is a draw down
test,

AX12=logt2 - log ty

~ Common values for L are 0 (consecutive points) up to 0.5
in extreme cases. Using L=0.2 the results are shown in Figure
14. Curmulative error was decreased to 10.6% from 18.88 %.

Method of Orthogonal Polynomials

Savitzky and Golay (1964) also presented a technique for
data smoaothing or to improve signal to noise ratio. This work
is very similar to their technique for data differentiation. They
provided the values of convoluting integers and normalizing
functions for various region sizes. Figure 15 shows the resuits

of using this smoothing technigue for 5 point region
Cumuiative error increased from 18.8% to 20.4%.

Method of dirty point filtering

Khan (1994) used the dirty point filtering to filter noise from
geophysical signals. The term ‘dirty point’ is equivalent to the
term ‘noised point’ which means sudden fluctuation of data
which break the continuumof data trend. Each point is judged,
according to given criteria, for its noise level. Ifit is found dirty
then the point is discarded from the data before differentiation.
For a point (x;, i) the two consecutive slopes are found

A= {yiryi1)/(Xi-Xi-1)
B = (Yi+1-yi)/(Xi+1-X)

Then an average of consecutive ordinates is found
Yavg = 0.5 (¥i-1 + yi+1)
CC=h Yavg

The factor 'h' is a fluctuation limiting variable and its suitable
value is found by iteration. Then a dirty point is found if
following two conditions are satisfied.

) Aand B are complementary to each other

either A>0 and B<0
or - A<QandB>0

1} eitheryi >Yavg +CC
or Yi <Yavg - CcC

Using this method for smoothing the data before
differentiation, the results are presented in Figure 16. The
elimination: of noised point reduced the cumulative error from
18.83% t0 0.2%.

Method of Moving Arithmetic Average

In this method the points in the selected region are added
and the sum is divided by the number of the points. Figure 17
shows the result of using this method for & point region. The
error was reduced from 18.83% to 9.76%.

ANALYSIS (B)

Method of dirty point filtering seemed to be the best one
because its error is minimum as compared with the other
methods. Method of moving arithmetic average and of
non-adjascent points are second and third best respectively.
The method of orthogonal polynomials had to be rejected
because it increased the error. Method of non-adjascent also
slightly disturbed the shape of the derivative curve. In the
present case it slightly compressed the curve.
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FIGURE 11: METHOD 4
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FIGURE 13: METHOD 4
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Next the selected smoothing algorithm and differentiation

were applied to a drawdown data (Horme, 1990) containing
multiple noised points and the results are presented in Figure
18-20. The dirty point filtering (Figure 18) ,which perforemed
best for single noised point, now performed worst (only 0.4%
smoothing). It performs a bit better if applied after
differentiation (Figure 21). Even then it did not provide a clear
picture at the late time data. The method of non-adjascent
points (Figure 20) performed better (10% smoothing) except
at the late time data. Now it stood second best instead of its
third best which was its relative performance when using single
noised point. Using arithmetic average (see Figure 19)
relatively maximum smoothing (17.04%) was obtained, The
shape was also preserved. So this method performed best
compared to its performance as second best when using
single noised point. This method provided similar result when
applied after differentiation (see Figure 22).

CONCLUSIONS

Smoothing pressure data, through arithmetic average and
then differentiating it with weighted average of slope method
tumed out to be the best combination to obtain pressure
derivative.
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NOMENCLATURE

C wellbore storage coefficient (stb/psi)
C1 total system compressibility ( /psi)

d differentiation operator

h thickness (ft)

Jo Bessel function of first kind, order zero
J1 Bessel function of first kind, order one
K permeability (md)

Pi initial Pressure (Psia)

Puwf wellbore flowing Pressure

Ap pressure drop (psi)

q liquid production rate (stb/d)

Iw wellbore radius (ft)

S skin factor

t time (hours)

Yo Bessel function of second kind, order zero
Y4 Bessel function of second kind, order one
u variable of integration

GREEK

B formation volume factor (res vol/std vol)
H viscosity (cp)

¢

porosity {pore vol/bulk vol}

FIGURE 15: SMOOTHING BEFORE DIFFERENTIATION
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FIGURE 21: SMOOTHING AFTER DIFFERENTIATION

USING DIRTY POINT FILTERING (h=0.1)

10000 ¢
B
a
i
E 100 s
. [
g— .’.’.‘) OO..Q.O
o ®
& o *
a o L)
o 4 “o
E OQQ o.OO O
5 100 E OO O.O
(42}
o0
i
bl
o~
‘n IR Y n IR B B W R i [ A RN I PRI T BN 1
0.01 01 1 10 100

TEST DURATION (hrs)
o RAW « SMOOTHED |




Muhammad Irfan Mir 71

FIGURE 22: SMOOTHING AFTER DIFFERENTIATION
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SUBSCRIPTS

avg  average

d dimensionless (pressure, radius. time)
o) oil

t total

W wellbore
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APPENDIX A

Fiuid Properties:

po=1.21 bbl/stb 1
Ct=8.72E-06 Psi
uw=092 c¢p

Reservoir Properties:

$=021

h=23 ft
k=771 md
Pi=6009 Psi

Wellbore characteristics:

S= 6.09
C=1.541E02 Dbbl/psi
rw=0401 ft

Using above data the following relationships were obtained;

S=9.09

Ca=5615C/2 Cth n.,f) = 2033

ts =.000264 Kt/ ( Gt rw) =1/ 1.3914E-05

Puwd = Kh (Pi - Puf) / (141.2q ) = (6009 - Pws) / 221.6
t d(P) / dt = 221.6 tq dPw/dtd

where P = P - Pwf



