Underground Gas Storage Study: A Step to Meet Potential Demand of Pakistan

Raja Tahir Sultan¹ and Mehboob Ali Leghari¹

ABSTRACT

This paper presents analysis of partially depleted Sadkal Gas Condensate Field a prospective candidate for underground Gas Storage. Gas storage reservoirs are used worldwide to store produced natural gas during periods of low demand for use during periods of high demand. Gas storage is the primary means of managing fluctuations in supply and demand. Proper selection of a gas storage reservoir is important to allow proper and economic operation of the project on a long-term basis. Gas storage reservoirs generally consist of good to excellent quality formations; Most of these are depleted, contain sweet natural gas (no H₂S) that are often located close to the ultimate demand source.

To meet the potential demand for gas in Potwar area of Pakistan during seasonal peak loads, which occur during the winter months of the year. The first everunderground gas storage analysis has been carried out at Sadkal field in Pakistan, located near the city of Islamabad in Potwar area, which seems to be a prospective way to meet seasonal demand.

INTRODUCTION

Natural gas storage is the process of injecting natural gas into porous underground rock formations so that it can be withdrawn later to meet customers demand. These rock formations are at great depths and typically are depleted or abandoned natural gas fields.

The natural gas travels to the storage field facilities through large underground natural gas pipelines. Prior to injection into the rock formations, the natural gas must undergo compression. Then it can be injected into several specially designed wells that transfer it to the underground storage zones deep in the earth.

The evaluation of partially depleted Sadkal Gas Condensate Field as a prospective candidate for underground gas storage was carried out to meet the potential demand for gas in the Potwar area of Pakistan (Figure-1).

Sadkal Gas Condensate Field is situated in Attock District of the Punjab Province near Fateh Jang, about 45 KM south west of Islamabad. Sadkal is also strategically located near to the transmission line giving it ready access to the distribution systems in the Potwar area.

The structure of Sadkal Gas Condensate Field is in the Basal Exploration licence area in the Northern Potwar

deformed zone. The crest of the structure is 2.5 KM north of Fateh Jang and is about 8 KM of Bhal Syedan.

The structure map and a gross thickness map of the Margalla Hill Limestone is shown in figures 2 and 3. Sadkal Gas Condensate Field comprised of numerous faults, particularly the major faults that compartmentalize the reservoir into at least four fault block regions A, B, C and D. Six wells have been drilled and five of the wells are completed in Margalla Hill Limestone, while Sadkal centre deep# 1 did not produce and was abandoned.

BACKGROUND OF UNDERGROUND GAS STORAGE

The first recorded natural gas storage facility was a depleted gas reservoir converted for storage service in 1915 in Welland County, Ontario, Canada. The first storage field in the U.S was the Zoar Field, located near Buffalo, New York. This field began operation in 1916, and is still in service today. These early fields provided the additional gas supply required by customers during periods of peak gas demand, particularly during the winter months. Natural gas produced from oil & gas fields was injected into the storage fields during the summer (low demand) months. This method also had the benefit of reducing gas curtailment in the producing fields. Due to this early success, other fields were converted to meet the growing demand for natural gas in the Midwest and Northeast U.S after World War II.

Aquifer storage was developed in the Midwest to serve the large market in the greater Chicago area, deeper depleted gas fields were developed in Pennsylvania, Ohio, and West Virginia, and the first bedded salt cavern storage was developed in Michigan. The first storage cavern in salt domes was completed in Mississippi by Transcontinental Gas Pipeline in 1970 as system supply backup for hurricanes.

Historically, available gas storage was used as a singleturn base loads, resulting in the most flexibility being provided by the pipelines, which were charging for the service. During the last five years, interest and demand for new storage has increased (Evans, 2000).

RESOURCES FOR UNDERGROUND STORAGE

The resources for underground gas storage include:

- 1. Salt caverns.
- 2. Mines.
- 3. Aquifers.
- 4. Depleted reservoirs.
- 5. Hard rock caverns.

¹ Oil and Gas Development Company Ltd., Islamabad.

Figure 1- Strategic location of Sadkal Gas Condensate Field near to gas transmission line for distribution system in Potwar area.

The Typical Gas Storage reservoirs are generally having good permeability clastics or carbonates existing at intermediate depths and temperatures. In general, these reservoirs are depleted formations, which originally contained sweet (no H_2S) natural gas. Typically, these zones do not contain mobile water or active or partially active aquifers, oil legs or residual liquid hydrocarbon saturations, although this is not always the case (DOE US).

PURPOSES OF GAS STORAGE

Gas storage is the primary means of managing fluctuations in supply and demand, and is an essential component of an efficient and reliable regional natural gas transmission and distribution network. Following are the main purposes of gas storage:

To meet seasonal demands for natural gas (base-load storage).

- To meet short-term peaks in demand (peaking storage), which can range from a few hours to a few days.
- Prevent disruption of supplies during mechanical or other problems in producing fields. (Buffer periods of peak demand).
- To ensure that adequate natural gas supplies are available to meet seasonal base-load customer requirements in winter.
- Natural gas storage also provides insurance for customers whose business need a reliable supply of natural gas.
- Allowing producers to comply with their contract obligations
- The storage of gas is needed to increase the efficiency of the gas distribution business.

DEVELOPMENT OF A GAS STORAGE RESERVOIR

Gas storage operation depends on the state and performance of the reservoir. Decisions to increase

Figure 2- Structural depth contour map on the top of Margalla Hill Limestone.

Figure 3- Gross thickness-isopach Margalla Hill Limestone.

cushion, working gas volumes and deliverability of the storage, drilling new wells as well as abandoning existing must be based on analysis and simulations to define the working envelope and investments (Lubimor, 2000).

For a reservoir to be a candidate for gas storage, the following criteria must be satisfied, when considering the development of a gas storage reservoir.

- Sufficient reservoir volume to allow for storage of the required amount of gas without exceeding containment pressure constraints and without requiring uneconomic compression to high-pressure levels.
- Satisfactory containment of the gas by appropriate upper and lower sealing cap rock.
- Compatibility of Injected gas with the native gas.
- Sufficient inherent permeability to allow injection and production at required delivery rates during peak demand periods.
- Problems, which may be associated with the presence of free water or hydrocarbons in the storage reservoir (both mobile and immobile).
- Formation damage issues that often surround the drilling and completion of new wells in the gas storage reservoirs for development purposes.
- Absence of hydrogen sulphide gas (in-situ or bacterially generated)

Effective utilization of an underground gas storage reservoir requires the pre-delivery and storage of significant volumes of gas as "cushion gas" i.e. a minimum volume that is maintained in storage permanently. Additional volumes are injected and maintained above the cushion gas volume to establish pressure and volume conditions necessary to provide the withdrawal rate required from storage when called upon by the distribution system. For any particular storage reservoir, cushion gas requirements may vary from 25 to 75% of reservoir capacity.

Critical planning and operations are required to balance underground gas storage capabilities, available gas supplies and market priorities to serve efficiently a defined market within acceptable economic parameters.

SELECTION OF SADKAL FIELD FOR UNDERGROUND GAS STORAGE

To investigate the possible storage candidates for conversion to underground gas storage a number of partially depleted gas and oil reservoirs in the Potwar area i.e. Adhi, Dakhni, Ratana, Sadkal, Dhulian, Dhurnal, Meyal and Toot were considered and exatuated in initial screening process. Parameters used in the screening process included, reservoir type and location, compatibility of injected gas with the native gas, working storage capacity, estimated well deliverability, number of wells needed to meet peak day demand, and mechanical condition of wells. The partially depleted Sadkal Field appears to be a suitable candidate for conversion to underground gas storage to meet storage need, while other candidate reservoirs were eliminated in the screening process. Due to deficiencies identified included reservoir type, compatibility of injected gas with the native gas, inconsistent working storage capacity was not consistent with the peak day demand,

inadequate permeability to deliver gas at required rates without converting or drilling an excessive number of withdrawal wells.

From a well deliverability perspective Sadkal is next to the Dakhni reservoir in flow capability. With a permeability-thickness of some 24,000 mD-feet, a typical Sadkal well was estimated to have a wellhead Absolute Open Flow (AOF) of some 70 MMSCF/D through 3½ inch nominal tubing. The partitioned nature of the Margalla Hill Limestone has the added feature of being amenable to sequential development as the peaking need for underground gas storage increases into the more distant future. Therefore Only the Sadkal, Margalla Hill Limestone with a smaller IGIP and its partitioned nature has merit as a storage candidate.

RESERVOIR GEOLOGY

Sadkal Gas-Condensate field has been divided into two reservoirs, the upper (the combined Chorgali & the upper Margalla Hill Limestone) and the lower Margalla Hill Limestone. The average depths of the reservoirs are 3500 M to 3600 M and the average thickness of the reservoirs are 78 M & 130 M respectively. A prominent shaly marker separates vertically both the reservoirs from each other. The upper reservoir (dolomitic limestone and limestone) has good matrix porosity (10-12%) whereas the lower reservoir has poor matrix porosity (1-2%) but has fracture porosity. All the fractures are originated due to tectonics in this reservoir. The Chorgali Formation is generally dolomitic with intercalations of shale and is less fractured than the underlying Margalla Hill Limestone that is cleaner and more fractured limestone (OGDCL, 1994)

FLUID PROPERTIES – PVT

Data which characterize the fluid properties of reservoir oil, gas and water are required to accurately simulate the behaviours of native gas and the make-up gas to be injected for storage. A number of laboratory analysis reports on fluid samples from Sadkal Gas Condensate Field are available for this study. These reports were reviewed for completeness and examined for systematic variation of key properties. The native gas composition based on the recombined gas analysis and other critical properties are listed in the table-1.

A detailed compositional determination was carried out on the native gas and the make-up gas to be injected for storage. Thus, the changes in fluid properties for various stages of the gas storage operation have been rigorously accounted for, in the analysis. Once the composition and properties of gas-in-place were determined for a given storage cycle, it was possible to calculate dew point pressure of the gas at any given temperature. Locus of dew point pressures over a wide range of temperatures established the 2-phase envelope, which is useful in determining the potential for liquid dropout from the gas either in the reservoir or during production and surface handling operations. The dew point envelope for the native reservoir gas suggests the reservoir fluid was initially a single-phase gas as the reservoir temperature exceeds the critical temperature. As pressure declines with depletion, the composition of the produced fluid will remain constant

until the dew-point pressure is reached at 5098 psia. Below this pressure the liquid condense out of the reservoir fluid as a fog or dew. This condensation leaves the gas phase with a lower liquid content. As the condensed liquid adheres to the walls of the pore system of the rock, it is initially immobile and a residual liquid saturation is established. Thus the fluids produced at the surface will have everdecreasing LGR (Liquid Gas Ratio) and an ever-increasing GOR (Gas Oil Ratio), which explains the varying and decreasing LGR performance of the wells.

This condensation continues and increases until a point of maximum liquid volume is reached about mid-way through the two-phase envelope. Thereafter, vaporization occurs during isothermal expansion, which gives meaning to the term retrograde condensation.

Based on an IGIP (Initial Gas In Place) estimated at 55 BCF and a cumulative production to year-end 2001 of 41 BSCF in the "B" block of Sadkal, leaves a remaining gas-inplace of some 14 BSCF. With reference to the supply demand schedule as indicated in table-3. It is estimated that some 13 BSCF must be injected to attain a gas volume of 25 BSCF necessary for appropriate deliverability rating for the 2003-2004 season. Thereafter, the fill-up can be staged with the full working gas volume of 6 BSCF and a GIP of some 55 BSCF being reached after three or four years. Based on the current gas-in-place and the above schedule of storage gas volumes the composition of gas-in-place for each storage cycle was calculated using molar recombination. Cycle 1, for example, 12 BSCF of native gas are mixed with 13 BSCF of make-up gas to storage. The cushion gas volume, with resulting composition of Cycle 1 gas-in-place, is then mixed with 10-42 BSCF of make-up gas for storage to calculate the composition of Cycle 2 gasin-place, and so on. Phase diagrams for relevant mixes of native gas and make-up gases are shown in the figure -4.

PRODUCTION HISTORY

Three wells, SK-01, SK-02 and SK-03 are completed in the 'B' block of the field and have produced a combined cumulative volume of 39 BSCF of gas and 2.58 MMBBL of condensate as of December 31, 2001. Production from the field was discontinued in November 1999 due to low pressure and low deliverability. When the decline in reservoir pressure could no longer lift gas and oil to the surface against a wellhead pressure of about 700 psia. With the installation and commissioning of compression facilities at the Sadkal processing plant in February 2001, these wells were returned to activity. Just prior to their resumption in production, the shut-in tubing-head pressure (SITHP) flowing tubing-head pressure (FTHP) and flow rates were measured and recorded table 1.

Table 1. Pressure and flow rate prior to installation of compression facility at Sadkal Gas Condensate Field.

Well	Sk-2	SK-3	SK-4	SK-5
FTHP (Psig)	690	690	700	2200
SITHP (Psig)	1200	1125	950	
Gas Rate (Mmscf/d)	4.00	2.50	3.00	8.50
Condensate Rate (bopd)	103	107	34	1000
Gas Equiv. Rate (mmscf/d)	4.07	2.58	3.02	9.23

The SK-01 well was suspended in November 1998 and has been subsequently abandoned No comparable flow data exists for this well. Meanwhile, the well SK-05 has flowed continuously to the surface on its own since being placed on production in July 1999 (Table 2).

Table 2. Comparable statistics for the wells in theSadkal Gas Condensate Field.

Well	SK-1	Sk-2	SK-3	SK-4	SK-5
Production	Jun-	Aug-	May-	Apr-	Jul-
Start Date	93	93	94	95	99
Peak Date					
Deliverability	10.7	12.5	11.7	12.4	12.6
(mmscf/d)					
*Cum.Gas					
Production	11.18	16.57	11.52	7.78	8.80
(bscf)					
*Cum.Oil					
Production	1.04	1.05	0.50	0.42	1.24
(mmbbl)					
*Cum.Wtr.					
Production	28.4	8.2	7.3	6.2	17.8
(mbbl)					

*December 31, 2001

The Cumulative oil production, which gives a cumulative average LGR of 72 BBL/MMSCF and suggests a moderately rich gas condensate system. As discussed earlier under the fluid properties section this liquid undoubtedly represents the production of a retrograde condensate, which condensed during early depletion and is now being vaporized and produced during late depletion. Once the gas storage operation commences, vaporization would be expected to continue warranting surface processing for some time. The gas equivalent of 725 SCF/BBL was derived for the liquid production and recognized in the gas production volume. Much of the water production experienced to date can be attributed to water of condensation. At original reservoir conditions the water of condensation is 0.55 BBL/MMSCF.

	Sadkal-01	Sadkal-02	Sadkal-04	Sadkal-05	All Average
Component	%	%	%	%	%
H2S	0.00	0.00	0.00	0.09	0.02
CO2	0.15	0.09	0.16	0.06	0.12
N2	0.22	0.11	0.09	0.14	0.14
C1	75.96	75.61	77.21	76.61	76.35
C2	8.39	8.30	8.12	8.47	8.32
C3	3.49	3.56	3.44	3.60	3.52
i-C4	0.86	0.87	0.84	0.84	0.85
n-C4	1.26	1.26	1.18	1.26	1.24
i-C5	0.56	0.59	0.54	0.55	0.56
n-C5	0.56	0.59	0.53	0.55	0.56
C6	0.82	0.83	0.73	0.75	0.78
C7	0.90	1.10	0.94	0.97	0.98
C8	0.81	1.37	1.20	1.16	1.14
C9	0.91	1.04	0.90	0.85	0.94
C10	0.73	0.75	0.68	0.65	0.70
C10+	4.32	3.93	3.44	3.45	3.79
	100.00	100.00	100.00	100.00	100.00
MW OF C7+			171	174	
Density of C7+			0.81	.081	

Table 3. PVT analysis data of Sadkal Gas Condensate Field.

MW OF C7+			171	174
Density of C7+			0.81	.081
GOR, scf /bbl	5402	6121	9180	8075
LGR, bbl / mmscf	185	163	109	201
Tank gravity, API				48

Table 4. Bottom hole pressure and temperature summary of Sadkal Gas Condensate Field.

Datum depth = 3128 mss

Well Name	Date	Test Type	Perfed Intervals (m)	Depth (m)	KB (m)	Depth (mss)	Pressure (psi)	Pressure @datum (psi)	BHT (°F)
Sadkal-1	24.04.92	DST	3670-3661	3645	480	3165	9886	9876	211
	02.05.94	PBU	3670-3661	3675	480	3195	6655	6630	213
Sadkal-2	14.08.93	PBU	3696-3608	3690	470	3220	9300	9255	208
	28.03.94	DST	3688-3654	-	483	-	6805	6805	200
Sadkal-3	05.04.94	DST	3558-3556	-	483	-	6647	6647	200
	02.09.01	PBU	3558-3527	3542	483	3058	1390	1446	202
	21.02.95	DST	3945-3941	3925	474	3450	10799	10591	245
Sadkal-4	15.05.95	MIT	3945-3941	3974	474	3500	7984	7768	245
	06.09.01	PBU	3945-3847	3926	474	3453	981	798	218
Sadkal-5	14.08.99	PBU	3585-3537	3514	497	3017	9100	9186	215

Figure 4- Phase diagram showing mixes of native and make-up gases.

Figure 5- Pressure production data for the reservoir of B-Block showing P/Z versus cumulative gas production of B-Block, Sadkal Gas Condensate Field.

Figure 6- Pressure production data for the reservoir of C-Block showing P/Z versus cumulative gas production of C-Block, Sadkal Gas Condensate Field.

PRESSURE HISTORY

The key results of the pressure surveys conducted over the time are summarized in table-2 and, corrected to a common datum of 3128 mss, of the main horizon of interest i.e. Margalla Hill zone.

INITIAL GAS-IN-PLACE

Material balance technique is used to determine the gasin-place for better accuracy. A plot of pressure production data for the reservoir of B-block in the form of P/Z versus Gp as shown in figure-5 estimates an IGIP of 55 BSCF. In this analysis the Gp values include the condensate production as a gas equivalent volume based on a molecular weight of 145 and a density of 0.79 for the liquid production. The gas equivalent conversion factor is 0.725 MSCF/BBL.

Figure 6 shows a similar plot of pressure production data for the C-block of the field in the form of P/Z versus Gp indicating IGIP volume of 9.4 BSCF.

GAS DEMAND & SUPPLY

The seasonal demand exceeds supply of the Sui Northern system-Seasonal peak loads, which occur during the winter months, cannot be met due to both system supply and transmission constraints. Figure-7 shows that the peak day demand rate occur 30 to 35 days each year intermittent and

are generally limited to an eight-weeks period centred at mid-January. A forecast of the peak day and average day demand is presented in table-5 (lkml 2002).

WORKING STORAGE CAPACITY

For gas reservoirs the cumulative production and associated pressure decline gives an indication of the reservoir voidage value. The graphical approach to the material balance for gas not only gives the total gas initially in-place but also can be converted to give the gas produced (or stored) per pound of pressure decline (or increase). Using the Sadkal field data to exhibit the B-block of the Margalla Hill Limestone had an initial discovery pressure of 10400 psig and showed an estimated pressure decline of 8000 psi while producing 26 BSCF. The ratio of production divided by pressure decline adjusted for the compressibility factor yields 6 MMSCF/psi of pressure drop as a storage capacity. Assuming as a gas storage reservoir the B-block operated between 10400 and 8700 psig this portion of the reservoir would have a working gas capacity of 10 BSCF. The peaking need (working gas volume) of 7 to 9 BSCF represents 16% of the IGIP and about 20 % of the recoverable gas reserve of B-block. From the demand and supply analysis a maximum requirement has been estimated to over a 35 days period during the winter months and the deliverability of the three wells (Tables 6 to 8). It is noted the capacity of three wells is adequate to meet the pipeline shortfall at least upto 2009-2010.

Figure 7- Daily gas sales of northern areas in different years.

Figure 8- Deliverability rate of Sadkal Well-2 for different tubing sizes.

Figure 9- Deliverability rate of Sadkal Well-3 for different tubing sizes.

Year	Peak Day	Avg. Day	Yearly	Pipeline	Capacity	Pipeline	0.06	Net 0.56 Available	Cum. Net	Max. Tranemiceton
	Demand	Demand	Demand	Falcal Gall	Potohar Bacin	Capacity	Available	for Storage	to Storage	Shortfall
	(MM8CFID)	(MM8CFID)	(BSCF)	(MM8CFID)	(MM&CFID)	(MMSCFID)	(MMSCF/D)	(BSCF)	(BaCF)	(MM8CF/D)
2000-2001	385	ŝ	49.275	200	05	290	290	505.35	0	7
2001-2002	311	146	67.03	225	05	315	SIE	61.685	0	7
2002-2003	255	ŝ	29725	225	05	315	315	505.72	52.6	នុ
2003-2004	22	169	61.685	260	05	360	350	66.065	52.6	42
2004-2005	88	181	66.065	260	05	350	350	61.685	52.6	Ŗ
2005-2006	413	192	70.08	260	05	360	350	29725	52.6	æ
2006-2007	439	204	74.45	260	05	350	350	9733	52.6	8
2007-2008	464	216	78.84	260	05	360	350	48.91	52.6	-114
2009-2009	490	227	82,855	260	05	350	350	44.895	52.6	40
2009-2010	516	239	87.235	260	05	360	350	40.515	52.6	-166
2010-2011	9 5	250	91.25	260	05	350	DSE	9'9E	52.6	961-
2011-2012	1/5	762	95.63	260	05	360	360	32.12	52.6	-221
2012-2013	965	273	39,645	260	05	350	DSE	28,105	52.6	-246
7043-2044	622	285	104.025	260	05	350	DSE	23.725	975	-272
2014-2015	ž	296	108.04	260	05	350	350	19.71	52.6	-298
2015-2016	673	308	112.42	260	05	360	DSE	15.33	52.6	525-
2016-2017	669	319	116,435	260	05	350	DSE	11.315	52.6	676-
2017-2018	57.1	331	120.815	260	05	09E	DSE	6.935	52.6	5/6-
2018-2019	151	342	124.83	260	05	09E	DSE	2.92	975	107
2019-2020	922	354	129.21	260	05	350	DSE	-1.46	512	927-
2020-2021	802	365	133.225	260	05	350	DSE	-5,475	45.7	757
2021-2022	828	222	137,605	260	05	360	DSE	958'6-	36	-478
2022-2023	1158	388	141.62	260	05	09E	OSE	-13.87	36	1 05-
2023-2024	8/3	400	146	260	05	350	DSE	-18.25	36	675-
2024-2025	306	411	150.015	260	05	350	350	-22,265	Я	995- 995-

Pakistan.
Areas
Northern
ъ
demand
∂sp
average
and
i peak
8
based
20
ъ
<u>e</u>
킁
sette
晢
0000
5
ui.
Table

	_					_	_			_	_	_	_			_	_	_	_		_	_	_					_	_	_				_			_	_
Time to	Deplete	(Daye)	0	18	무	83	102	144	196	260	339	0	24	22	3	8	128	170	220	280	0	17	37	61	06	125	165	220	280	0	17	37	61	8	124	13]	220	000
Field Deliverability	Rating	(mmcof/d)	124	111	8	88	22	8	9	t.	4	131	118	201-	8	87	æ	8	z	29	133	120	108	8	8	80	73	3	67	133	120	109	8	88	81	73	3	t
Well Head Flowing	Pressure	(pela)	2000	2000	0007	2000	2000	2000	2000	2000	2000	0001-	0001-	0001-	0001-	1000	1000	1000	000	1000	005	005	005	200	005	005	005	1000	1000	300	300	300	300	300	300	300	1000	1000
Well Head Shut-In	Pressure	(pola)	6442	8665	2683	5197	4839	4510	4206	1824	3661	6442	8665	6885	2615	4839	4510	4206	3924	3881	6442	8665	5583	2197	4839	4610	4206	3924	3881	6442	5998	5683	2197	4839	4510	4206	10265	2000
Reservoir	Pressure	(pela)	7638	7148	6687	6255	5852	5478	62159	4803	4488	7638	7148	6687	5553	5852	5478	5129	4803	4488	7638	7148	6687	6255	5852	5478	5129	4803	4488	7638	7148	6687	6255	5852	5478	5129	4803	1.000
	0.86	Comp.	1.18	1.15	1.12	1.09	1.05	1.04	1.02	1.00	0.88	1.18	1.15	1.12	1.09	1.05	1.04	1.02	1.00	0.88	1.18	1.15	1.12	1.09	1.06	1.04	1.02	1.00	0.88	1.18	1.15	1.12	1.09	1.05	1.04	1.02	1.00	2.20
	PIZ	(pcia)	6454	6220	9865	5752	5518	5284	0905	4816	4682	1513	6220	5996	2525	5518	5284	5050	4816	4582	1515	6220	9865	5752	5518	1925	0505	4816	4582	6454	6220	9865	5752	5518	5284	0505	4816	1000
Working Gas Volume.	Z/d_(q+2)=0	(beof)	0.0	2.0	4.0	6.0	8.0	10.0	12.0	0.41	16.0	0.0	2.0	4,0	6.0	8.0	10.0	12.0	14.0	0.91	0.0	2.0	4,0	6.0	8.0	0701-	12.0	14.0	16.0	0.0	2.0	4,0	6.0	8.0	0101-	12.0	14.0	
Cushion 0.56	Volume	(beed)	55.2	53.2	21/5	49.2	47.2	45.2	43.2	412	39.2	55.2	53.2	512	49.2	47.2	45.2	43.2	412	39.2	55.2	282	51.2	49.2	47.2	45.2	43.2	412	39.2	55.2	532	512	49.2	47.2	45.2	43.2	412	0.00

Table 8. Deliverability of B-Block for fubling cize (3 % Inches dia) of Sadkal Gas Condensate Field.

5	Working				Well Head	Well Head	Field	
õ	se Volume.			Reservoir	Shut-Im	Flowing	Deliverability	Time to
ö	Z)d_(q+2) =	PIZ	0.00	Preceure	Pregeure	Preceure	Rating	Deplete
	(bea)	(pela)	Comp	(pola)	(pola)	(pela)	(mmsof)d)	(Days)
	0.0	6454	1.18	7638	6442	2000	107	0
	2.0	6220	1.15	2148	8665	2000	821	11
	4.0	5965	1.12	6687	5895	2000	951	19
	6.0	2525	1.09	6255	2615	2000	261	ħ
	8.0	8195 5518	1.06	2985	4839	2000	021	33
┡	10.0	5284	104	8478	4510	2000	105	88
	12.0	0505	1.02	5129	4206	0007	6	131
┡	14.0	4816	1.00	4803	17.6E	2000	ę	176
	16.0	4582	0.88	4496	3661	2000	88	234
	0.0	6454	1.18	7638	6442	1000	214	0
	2.0	6220	1,15	7148	9666	1000	191	P
	40	5995	1.12	6687	5835	1000	170	R
	6.0	5752	1.09	6255	5197	1000	151	₽
	8.0	5518	1.06	2952	4839	1000	135	8
	10.0	1975	1.04	5478	4610	1000	120	8
	12.0	9090	1.02	5159	4206	1000	107	112
	140	4816	1.00	4803	3824	1000	æ	254
	16.0	4532	0.88	4498	3881	1000	38	188
	0.0	6454	1.18	7638	6442	005	242	0
	2.0	6220	1.15	7148	8665	005	194	₽
	4.0	3995	1.12	6687	5835	005	173	ន
	6.0	2525	1.09	6255	5197	005	155	8
	8.0	5518	1.06	5852	4839	500	138	8
	10.0	5284	1.04	8/1/5	4510	2005	124	δo
	12.0	2050	1.02	6215	4206	005		108
	14.0	4816	1.00	4803	1036	005	66	1 7 1
	16.0	4532	0.86	96545	1996	009	8	081-
	0.0	1519	1.18	2638	5442	300	242	0
	2.0	6220	1.15	7148	8665	300	161	₽
	4.0	9865	1.12	2899	2895	300	72 F	22
	6.0	2525	1.09	5529	2615	300	951	82 82
	8.0	8155	1.06	2585	4839	300	139	85
	10.0	5284	1.04	81MS	4510	300	124	8
	12.0	5050	1.02	5129 5129	4206	300	112	108
	14.0	4816	1.00	4803	1708E	300	100	07:
	10.0	1000	000	1.000	0.000	000		1.75

ileid.
ate
nden
õ.
1034
adka
ñ.
s dia
Setter
1155.1
<u>R</u>
n a
L tub
ę ¥
<u>B</u>
, of B
ellit?
Nera
5
Table 7

																																			_	_
Time to Depiete	(Daye) D	6	21	37	35	80		150	200	0	6	92	R	8	2	8	135 1	181	0	6	19	33	49	88	20	120	181- 1	0	6	61	32	48	89	9	119	52
Field Deliverability Rating	(mmcofid) 242	213	187	164	143	124	901-	g	80	252	229	203	180	160	ġ	126	÷15	100	361	233	202	185	164	147	131	211	901-	262	233	208	185	165	148	132	118	108
Well Head Flowing Preceure	(pela) 2000	2000	2000	2000	2000	2000	2000	2000	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000	005	005	005	005	500	200	500	005	009	300	300	300	300	300	300	300	300	800
Well Head Shut-In Preceure	(pela) Filia	9665	5683	5197	4839	4610	4205	178E	3861	6442	8665	5683	2497	4839	4510	4206	3824	3661	6442	8665	2895	2615	4839	4510	4206	10266	3661	6442	8665	5663	2197	4839	4510	4206	3824	9864
Recervoir Pressure	(pela) 7638	7148	6687	6255	5852	8458	6715	4803	4498	7638	7148	6687	6255	5852	878	5129	4803	4498	7638	7148	6687	6255	5852	5478	5129	4803	9657	7638	7148	6687	6255	5852	5478	5129	4803	4454
0.00	Comp.	1.15	1.12	1.09	1.05	1.04	1.02	1.00	0.88	1.18	1.15	1.12	1.09	1.06	1.04	1.02	1.00	0.88	1.18	1.15	1.12	1.09	1.05	1.04	1.02	1.00	0.88	1.18	1.15	1.12	1.09	1.06	1.04	1.02	1.00	980
Zid	(bela) (251)	6220	5996	2525	5518	1025	0505	4816	4582	6454	6220	5996	7525	5518	5284	2050	4816	4582	6454	6220	9865	2525	5518	5284	5050	4816	4532	7573	6220	9865	2525	5518	1925	0505	4816	4535
Working Gas Volume. G= (a+b)*p/z	(peol)	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	0.0	2.0	4.0	6.0	8.0	10.0	12.0	074	16.0	0.0	2.0	4.0	6.0	8.0	10.01	12.0	14.0	0.00
Cushion 0ac Volume	(beof) cc 2	532	512	49.2	47.2	45.2	43.2	412	38.2	55.2	532	512	49.2	47.2	45.2	43.2	412	38.2	55.2	53.2	512	49.2	47.2	45.2	43.2	412	39.2	55.2	532	512	49.2	47.2	45.2	43.2	412	00.0

1
- 26
Ē
욯
2
8
- 5
õ
8
0
5
Ե
20
ē
2
2
ē.
2
5
ē
욚
ē
둜
Ξ.
5
5
- 8
õ
Ċ
ъ
₽
2
2
2
5
- 00 - 00
ā,
Ĕ.

According to elementary economics and recognition for the recoverable cushion gas, the investment cost to develop a Sadkal gas storage facility ranges between 50 and 70 million dollars. However, 70% of the investment is cushion gas of which 90% is recoverable. The cost of service of developing 'B' block is estimated to be

US\$ 3.48 per MSCF. The cost of service can be reduced to US\$2.33 per MSCF by increasing the THP to 1000 psia and minimizing compression on the withdrawal cycle with limited loss in deliverability.

DELIVERABILITY

The two main factors in underground gas storage are working gas capacity and deliverability rating. To establish the rated deliverability of the Sadkal storage facility, for tubing and casing sizes of 3 $\frac{1}{2}$, 4 $\frac{1}{2}$ and 7-inch, the inflow-outflow calculations charts are shown in figures 8 to 10.

CONCLUSIONS

From Demand and supply analysis a maximum requirement has been estimated to over a 35 days period during the winter months. It is concluded that field deliverability calculation based on material balance (P/z versus working gas volume) and an initial gas-in-place volume of 55 BSCF, confirmed that the B-block of the Margalla Hill Limestone in the Sadkal Gas Condensate Field can fulfill the gas storage requirements identified over the next ten years for Potwar area of Pakistan.

ACKNOWLEDGEMENT

We are very thankful to the Management of the OGDCL for the permission of the publication of this paper. We are also grateful to Shoukat E.Qazi, Pervez Ali Khan and Hameed Afzal for their support.

REFERENCES

- Evans , L. Jay, 2000, Jr. International Gas Consulting, Inc. "The Re-Engineering of Gas Storage Facilities to Meet the New Demands of Today's Marketplace" presented at the 2000 SPE/CERI Gas Technology Symposium held in Calgary, Alberta Canada, 3-5 April 2000 (59797).
- Natural Gas Infrastructure & Storage, DOE US Web Site.
- Lubomir G.Gerov, Shteryo K.Lyomove, 2000, University of Mining and Geology, Sofia, Bulgaria."Gas Storage performance in a Fractured Formation" presented at the 2000 SPE Gas Technology Symposium held in Calgary, Alberta Canada, 30 April 2000.
- Intercomp Kanata Management Ltd, Canada, Storage Feasibility study Phase-I, 2002, OGDCL.
- Development plan of Sadkal gas condensate field, 1994, Oil and Gas Development Company Ltd., Islamabad Pakistan.