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Balanced Structural Cross-section of the Sulaiman
Lobe, Pakistan: Evolution, Geometry, Shortening
and Hydrocarbon Prospects of a Thrust System
at the Western Terminus of the Indian Plate
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ABSTRACT

Surface and subsurface data from the Sulaiman
fold-and-thrust belt are integrated to evaluate geometry
of a thrust system and tectonic shortening across the
western margin of the Indian subcontinent. A balanced
structural cross-section suggests 4 to 10 km uplift of
Cretaceous and younger strata from foreland to
hinterland of the Sulaiman lobe of Pakistan. This
structural uplift is due to a thin-skinned, passive-roof
duplex style of deformation. The duplex sequence is
bounded between a decollement on the crystalline
basement and a passive-roof thrust in the Cretaceous
shales. The passive-roof sequence is preserved for
about 150km in the Sulaiman thrust system. Structural
cross-section shows ophiolites, a triangle zone,
out-of-sequence structures (secondary faults and
related pop-ups), fault-related, and concentric buckle
folds from hinterland to foreland respectively.

A balanced structural cross-section 349 km long
from the Sulaiman fold belt restores to an original
length of 727 km, suggesting a maximum of 378 km of
shortening in the cover strata of the Indian
subcontinent. The shortening in the roof sequence is
accommodated along emergent passive-roof thrust and
backthrusts. Calculation of displacement rates over the
Sulaiman lobe (18 mm/yr) added to the resolved rate
of the Chaman fault vector for the component paraliel
to the plate convergence direction (15 mm/yr) are
close to the current India-Asia plate convergence rate
(37 mm/yr).

Total shortening of about 378 km and transitional
crust underneath the Sulaiman lobe compared to full
thickness crust in northern Pakistan suggests an early
stage of collision along the western margin of the Indian
plate.
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INTRODUCTION

The Sulaiman lobe (Sarwar and Delong, 1979) to the
west of the Himalayas is a broad ( >300 km) and gentle
(<1°) fold-and-thrust belt that is tectonically active
(Figures 1 and 2). it is developed by transpression as a
result of leftdateral strike-slip motion along the Chaman
fault and southward thrusting along the western
terminus of the Indian subcontinent (Lawrence et al.,
19813; Farah et al., 1984; Quittmeyer et al., 1984). its
surface geology is dominated by continental platform
and shallow marine rocks bordered by ophiolites and
flysch in the rear and continental molasse strata in the
foredeep (Figure 2). This broad fold belt is apparently in
an early stage of continental convergence; nowhere are
continental basement rocks exposed in the
fold-andthrust belt or interpreted to be involved in the
thrusting at depth. The fold belt is interpreted to overlie
transitional or oceanic crust of a previously extended
continental margin (Lillie, 1991; Jadoon, 1992; Khurshid
et al., 1992). In contrast, the main Himalayas have
continental crust of nearly twice normal thickness, as
interpreted using surface wave dispersion (Gupta and
Narain, 1967; Chun and Yoshii, 1977; Chun, 1986) and
Bouguer gravity data (Duroy et al., 1989). In addition,
basement rocks are exposed at the surface above the
Main Central thrust (LeFort, 1975).

Recent studies constrained by seismic reflection and
borehole data in the North American Cordillera,
Appalachians, Alps, Himalayas, and Taiwan have
provided insight into the mechanism of deformation,
geometry, and evolution of structures in the collision
zones (Rich, 1934; Dahlstrom, 1969, 1970; Suppe,
1980, 1983; lLaubscher, 1981; Acharyya and Ray,
1982; Bachman et al., 1982; Jones, 1982; Davis et al.,
1983; Davis and Engelder, 1985; Banks and Warburton,
1986; Boyer, 1986; Mitra, 1986, Lillie et al., 1987;
Jaume and Lillie, 1988; lzatt, 1990; McDougal and
Hussain, 1991, Jadoon et al., 1992). Studies of active
mountain belts (i.e. Himalaya and Taiwan) are important
because they provide constraints on collisional
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Figure 1- Simplified tectonic map of the
Indian/Afghan collision zone. The arrow shows
convergence vector of India relative to the Afghan
block (Minster et al., 1974). Lines A-A’ and B-B' show
the locations of the balanced structural (Figure 9) and
crustal (Jadoon, 1992) sections respectively. Box
shows the location of the Figure 2. KB=Kabul Block,
MBO=Muslimbagh Ophiolites, Q=Quetta,
SR/PP=Salt Range/Potwar Plateau.

processes that are unavailable in ancient mountain
belts. In this study seismic reflection and well data,
available from the foreland of the active Sulaiman fold
belt are integrated with surface geology and Landsat
data to draw a balanced cross-section across the entire
Sulaiman fold belt to: (1) recognize geometry, structural
style, and evolution of surface and deep structures in
the Sulaiman fold belt; and (2) evaluate shortening in
the cover strata of the Indian subcontinent.

Our balanced structural cross-section favours the
duplex style of deformation in the Sulaiman lobe. In
these structures, floor and roof faults are the major flats
and multiple ramp faults between them form duplexes
(Dahlstrom, 1970; Boyer and Elliot, 1982). The rock

units above the roof fault are known as the roof
sequence. Recently, investigators have recognized roof
faults in which the sense of motion is opposite to the
vergence of the thrust system as a whole, called
passive-backthrusts (Jones, 1982; Banks and
Warburton, 1986; Wallace and Hanks, 1990; and
Humayon et al., 1991). In some cases, these roof
sequences are shown in balanced structural
cross-sections as thin and continuous units of great
length (Hobson, 1986). The balanced structural
cross-section in this study along the centrdl line of the
Sulaiman lobe, Pakistan has one of the longest
passive-roof structures yet described. This actively
deforming foreland thrust iobe provides new data on the
development of such systems.

TECTONIC FRAMEWORK AND STRATIGRAPHY

The Himalayan mountain belt changes trend from
northwest-southeast in India to northeast-southwest in
Pakistan (Figure 1). Typical of the foreland part of the
northwestern Himalaya in Pakistan are two broad lobate
features: Salt Range/Potwar Plateau and the Sulaiman
fold belt. Their lobate geometry is interpreted to be the
result of rapid southward translation along a weak
decollement of the tear fault bounded thrust sheets
(Sarwar and Delong, 1979; Seeber et al., 1981). This
is similar to the foreland translation of the Pine Mountain
thrust block of the Central Appalachians (Rich, 1934;
Harris and Milici, 1977) and the Jura Mountains of
Europe (Laubscher, 1981). Deformation is progressively
younger toward the foreland, as constrained by magnetic
stratigraphy (Johnson et al., 1985; Raynolds and
Johnson, 1985} and neotectonic activity in the Salt
Range/Potwar Plateau (Yeats et al., 1984, Yeats and
Lillie, 1991). In the Sulaiman fold belt progressive
deformation is evidenced by structural style (Hunting
Survey Corporation, 1961; Kazmi and Rana, 1982), a
prominent topographic front, and seismicity over the
frontal folds (Quittmeyer et al., 1979; 1984), and
magnetostratigraphy (Ahmad and Khan, 1990).

Unlike the Salt Range/Potwar Plateau that is
associated with the main zone of Himalayan
convergence, the Sutaiman fold belt is located along a
zone of transpression (Sarwar and Delong, 1979;
Lawrence et al., 1981a; Klootwijk et al., 1981, 1985;
Farah et al., 1984) in the northwestern part of the Indian
subcontinent (Figure 1). The broad Sulaiman fold belt is
hounded to the west and north by the leftlateral
strike-slip Chaman fault zone (Figure 2). The foredeep
basin to the east and south of the active Sulaiman Lobe
is formed mainly as a result of tectonic compression
between the Indian plate and the Afghan block (Figure
2). The initial event of collision is manifested by the
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Figure 2- Generalized tectonic map of the Sulaiman lobe (modified from Kazmi
and Rana, 1982). Areas of Figures 6 and 8 are shown by boxes. See Jadoon
(1991a) for a detailed geological map of the southern box. Lines A-A’ and B-B’
show the locations of the balanced structural (Figure 9) and crustal (Jadoon,
1992) sections respectively, C-C' and D-D’ show the location of balanced
cross-sections by Banks and Warbkurton (1986) and Humayon et al. (1991),
respectively. E-E’ shows gravity profile by Khurshid et al. (1992). Well
abbreviations: G = Giandari-1, J = Jandran, K = Kandkot-2, KR = Kotrum, L =
Loti-2, M = Mari-2, PK = Pirkoh-2, S = Sui-1, SS = Sakhi Sarwar, TM = Tadri
Main, U = Uch, Z = Zin.
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emplacement of the Muslimbagh ophiolite between Late
Cretaceous and Early Eocene times {Allemann, 1979).
An unconformity between Cretaceous and Paleocene
rocks in the Attock Cherat Ranges north of the Potwar
Plateau (Yeats and Hussain, 1987) extends all the way
to the Loralai valley of the Sulaiman Range (Hunting
Survey Corporation, 1961). Renewed southward
thrusting since late Oligocene-early Miocene constantly
reworked the molasse strata migrating the Indus basin
farther east and south (Banks and Warburton, 1986;
Waheed and Wells, 1990). This is similar to the
southward migration of the active foredeep basins of the
Ganges plain in India and the Jheium plain in Pakistan
(Acharyya and Ray, 1982; Raiverman et al., 1983;
Johnson et al., 1985; Raynolds and Johnson, 1985).

The main structural elements in the Sulaiman fold belt
are east-west trending arcuate folds and faults which
rotate rapidly to a north-south direction along the margin
of the active fold belt (Figure 2). imbricate faults are
visible at the surface only in the north (Hunting Survey
Corporation, 1961; Kazmi and Rana, 1982). They
gradually disappear toward the frontal part of the fold
belt in the subsurface.

Rocks from the Sulaiman fold belt can be divided into
three main groups to emphasize their tectonic
significance. From south to north these units are: (1) late
Oligocene to Recent molasse deposits; (2) Eocene to
Permian, shallow-marine shelf to deep marine rocks
(Kazmi and Rana, 1982)); and (3) late Eocene to early
Oligocene Khojak Flysch (Lawrence and Khan, 1991).
The Muslimbagh ophiolites in the Zhob valley represent
pieces of oceanic crust thrust over Maestrichtian shelf
strata (Abbas and Ahmad, 1979). See Jadoon (1991a)
and Jadoon et al. (1992} for a stratigraphic column of
the Sulaiman fold belt at the deformation front based on
surface geology, well data, and seismic reflection
profiles. The exposed Eocene to Permian rocks from the
Sulaiman fold belt are similar to those of the Salt Range,
except that the 7 km thick carbonate dominated
sequence is much thicker than that of the Salt Range.
The Sulaiman fold belt with such a thick sedimentary
section yet with relatively high Bouguer gravity anomalies
is interpreted to overlay an extended crust (Jadoon et
al., 1989; Lillie, 1991; Jadoon, 1992; Khurshid et al.,
1992). Absence of the involvement of the crystalline
basement and the presence of a transitional crust about
20 km thick suggest an early stage of convergence in
the Sulaiman lobe. This implies that active collision
structures may be observed through a younger stage of
evolution in the Sulaiman than main Himalayas.

The hydrocarbon prone Sulaiman fold belt has not
been mapped or structurally investigated in detail.
Recent structural studies suggest different models for
its evolution. Banks and Warburton (1986) proposed
duplex style of deformation for the western
Sulaiman/Kirthar Ranges. This is favoured by the

Humayon et al. (1991) and Jadoon et al. (1992). The
duplex style of deformation is in contrast of the Sulaiman
lobe consisting of a series of imbricate, forward verging
thrust sheet (Bannert et al., 1989) or the basement
involvement in the thrusting (Ahmed and Ali, 1991).
Discussion to follow based on surface and subsurface
data presents a balanced cross-section in order to
comprehend the evolution and shortening of the
Sulaiman thrust system.

GENERAL OBSERVATIONS
FROM INTEGRATION OF SURFACE
AND SUBSURFACE DATA

Seismic reflection profiles from the frontal part of the
Sulaiman fold belt and the adjacent foredeep in Pakistan
have been interpreted in conjunction with drill hole,
surface geology, and Landsat data (Figures 3-9). The
main conclusions are:

(1) The thickness of the Phanerozoic sedimentary
wedge at the deformation front is exceptionally high,
about 10 km. The structurally duplicated sedimentary
section in the hinterland is about 20 km thick. This
thickness includes more than 7 km of
carbonate-dominated Paleozoic to Eocene strata
{compared to about 1 km for the same age strata in the
Salt Range).

(2) Basement dip is about 2.5° to the north.
Basement is not involved in the deformation at least as
far back as the Bugti syncline. This is based on the
critical observation of the seismic data from southern
Sulaiman foreland (Figure 3). However, farther north
involvement of the basement is not precluded as the
nature of the crust is inferred to be transitional below
the Sulaiman fold belt (Jadoon, 1992; Khurshid et al.,
1992).

(3) Seismic reflection profiles show that basal
decollement is located at the interface between
crystalline basement and sedimentary wedge (i.e.
81-L0-2 in Figure 3) in the Sulaiman lobe. Evidence
suggests that the Eocambrian evaporite sequence that
provides an effective zone of decoupling at the base of
the section in the Salt Range and Potwar Plateau (Lillie
etal., 1987; Jaume and Lillie, 1988) may not be present
along decollement in the Sulaiman {obe. However, a
weak decollement in the Sulaiman fold-and-thrust belt
may be in pelitic rocks or fine carbonates above the
crystalline basement at a depth of more than 10 to 15
km. This is supported by average geothermal gradient of
about 30°C in the foreland of the Sulaiman fold belt
(Jadoon, 1991a).

(4) The southern Sulaiman lobe reflects a coherent
stratigraphy in which older rocks are progressively
exposed in the cores of more northerly, tighter anticlines
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Figure 3- Map of seismic reflection and well data coverage. Bold lines were used to project subsurface data onto
the balanced cross-section A-A’ (Figure 9). The crystalline basement can be seen on seismic lines 834-SAJ-22
and W-15-BP. Well abbreviations are same as in Figure 2. Data were released by Oil and Gas Development
Corporation of Pakistan (OGDC), Amoco, and Texaco overseas.
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Figure 4- Partial geological cross-section of the southern Sulaiman foreland. See Figure 6 for location. The
cross-section (Jadoon et al., 1392) is based on the seismic reflection, borehole, surface geology, and LANDSAT
data. It shows the extrapolated top to the crystalline basement, decollement zone, and a space problem due to
tectonic uplift of Cretaceous and younger strata as a coherent slab, over the older strata. Notice concentric
folding is the structural style of the broad Sui and Loti anticlines. The space in the cores of these folds (Sui and
Loti) may be filled by ductile flow within the decollement zone at a depth of more than 10 km. Text identifying
the individual folds at the surface are from the individual mountains.




20 Balanced Structural Cross-section of the Sulaiman Lobe

SULAIMAN FOLD BELT

(Seismic Coverage Present)

TADRI

L N S T A T T T L T
I/I/IIIIIIIIIIIIIII
S T . . .1 NN

KURDAN DANDA PIRKOH BUGTI

. Passiye-Backthrust

I/f/l/l/f’////////l

LOTI

NN NN N N N NN

NN

aaaaaaaaaaaa

|
100

KILOMETERS

Figure 5- Complete geological cross-section of the southern Sulaiman foreland (from Jadoon, 1991a). It suggests
duplex style of deformation to solve the space problem in Figure 4. The duplex sequence of Jurassic and older
rocks is bounded between a floor thrust (decollement) above the crystalline basement and a roof thrust
(passive-roof thrust) in Cretaceous Sembar shales. Folds at the surface reflects the shape of the duplex hotses

below. See Figure 4 for the patterns.

(Jadoon, 1991a; Jadoon et al., 1992). The crests of
these foids are cut only by small-scale normal faults.
Seismic reflection profiles show that northwards from
the Bugti syncline rocks exposed at the surface are
structurally elevated by the over thickened, active wedge.
The resultant structural relief is 4 to 8 km from south to
north in the foreland (Figure 4). Interpretation of seismic
reflection data (Jadoon, 1991a; Jadoon et al., 1992)
suggests that structural reliefis due to duplexes at depth
(Figure 5).

(5) The Central Sulaiman lobe exhibits an extensive
system of faults (Figure 6). These are interpreted as
reverse faults mostly restricted to the roof sequence.
Tight anticlines between paired faults with hinterland
and foreland vergence are interpreted as pop-ups (Figure
7).

(6) The Northern Sulaiman lobe shows the structure
of a ftriangle zone between hindward emergent
passiveroof fault and forward vergent Loralai thrust
(Figures 8 and 9).

(7) Overall structural style is of hinterland dipping
duplexes bounded between a floor thrust near the base
of the sedimentary section and a passive-roof thrust in
thick Cretaceous shales. In the foreland broad and
gentle folds (Sui and Loti), half wavelength about 20 km,
may be primarily formed as a result of ductile flow of
material in the core of the anticlines at a depth of about
10 km {Figures 5).

(8) Total shortening parallel to the direction of tectonic
transport along the duplex structures and the broad
frontal folds is estimated as 378 km. Shortening in the
roof seguence is accommodated by erosion at the

emergent tip of passive-roof (Figures 9 and 10D) and
overstep back thrusts (Figure 10C).

(9) Duplex geometry implies that petroleum producing
Cretaceous and Eocene horizons may not be present in
the lower plate for drilling. It suggests to determine the
prospects for hydrocarbons in the Jurassic for drilling in
the favourable duplex structures.

The details of these structures are discussed below
in the context of seismic reflection profiles and the
balanced structural cross-section A-A’ (Figures 2 and 9).
This is followed by discussion of the palinspastic
restoration, style of deformation, timing and rate of
deformation, and hydrocarbon prospects.

DATA, AND BALANCED
STRUCTURAL CROSS-SECTION

Surface Geology and Landsat Data

Geological maps (1:250,000) by the Oil and Gas
Development Corporation of Pakistan (OGDC) of the
frontal folds, unpublished maps (1:250,000) in the
Geological Survey of Pakistan (GSP) from the central
Sulaiman (Marri Bugti area), and the Hunting Survey
Corporation maps (1:253,440) along with Landsat data
(1:125,000), provide surface geology coverage. This
data set is used to construct a balanced structural
cross-section across the western collisional boundary of
the Indian Subcontinent (A-A’ in Figure 2). Field checks
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Figure 6- Geological map of the central Sulaiman fold belt. See Figure 2 for location
in the Sulaiman lobe. Compare the surface {secondary) structures in this map to the
deep (duplex) structures in Figure 7. Dashed line between Kohlu and Tadri synclines
show the location of Figure 7. Curved line (EU-16) shows the location of a seismic

reflection line.
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Figure 7- Structural cross-section of part of the central Sulaiman fold belt. See Figure 6 for location. Notice
pop-ups and associated reverse faults with minor throw of the top Cretaceous, Paleocene, and Eocene. These
secondary faults emerging from the passive-roof thrust, may represent an early stage of development of
overstep-backthrusts. Symbols in above section represent dips measured in the field. See Figure 4 for the patterns.

were done along the cross-section in two seasons during
the fall of 1988 and winter of 1990.

Main Structural Zones of the Sulaiman Lobe

Study of the geological maps shows simple to complex
surface structures from the foreland towards the
hinterland. This variation is related to the active
evolution of the Sulaiman fold belt. For simplicity of
discussion in this paper, the broad (>300 km) Sulaiman
fold belt is divided into different structural zones along

a regional, 349 km long balanced cross-section (A-A’ in
Figure 2).

Southern zone.- The southern Sulaiman lobe consists
of an area from the Sulaiman foredeep to Tadri and Sian
Koh anticlines. See Jadoon (1991 a) for a geological map
of this area. This area mainly consists of Tertiary
molasse and Paleogene to Cretaceous platform
sedimentary rocks. It is dominated by broad, eastwest
trending, doubly plunging surface folds whose axes
rotate toward the north-south at the edges of the fold
belt.
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Figure 8- Geological map of the northern Sulaiman fold belt (modified from Hunting Survey
Corporation, 1961; Bhatti et al., 1984). See Figure 2 for location in the Sulaiman lobe. Dashed
line shows the location of a part of the balanced cross-section A-A’ (Figures 2 and 9) on this map.
Notice the consistent uplift of the older rocks toward the north, widespread Cretaceous strata,

and the hot springs in the broad Loralai valley.
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Figure 10- Multiple interpretations of duplex geometry (A) emergent allochthonous roof sequence, (B) superficial
decollement in the roof sequence, (C) passive-roof sequence with multiple overstep backthrusts, and (D)

passive-roof sequence with limited backthrusts, Different models illustrate shortening in roof sequences based

on practical examples around the world.

Central zone.- The central Sulaiman fold belt consists
of an area between the Tadri and Kohlu synclines (Figure
6). This area is dominated by foreland and hinterland
verging faults. These thrust/reverse faults juxtapose
Cretaceous against Eocene rocks. Folds in the central
zone appear to be related to these faults.

Northern zone.— The northern Sulaiman fold belt
consists of an area between the Kohlu syncline to
Muslimbagh (Zhob valley) ophiolites (Figures 2 and 8).
The exposed rocks are progressively older (Paleogene to
Triassic) toward the north. South of the Loralai valley,
structures are dominated by symmetrical folds
(wavelength about 10 km), e.g. the Garhar Ghar anticline
(Figure 8). These folds become much tighter (wavelength
less than 2 km) as the Loralai valley is approached (see
maps of Hunting Survey Corporation, 1961). These tight
folds may be interpreted as detachment folds with a
decollement in thick Cretaceous shale that is extensively
distributed in the Loralai valley.

Faults are present in the northern zone but are not as
abundant as in the central zone. Two main faults are
inferred in the Loralai valley (Figure 8) based on an abrupt
facies change and structural interpretation along the
balanced structural cross-section. One fault, the Loralai
thrust, is inferred due to distal pelitic facies of Jurassic
limestone against shallow water massive limestone of
the same age. Structures in the dominantly pelitic
sequence are kink and box folds. The other fault, the

Loralai backthrust, is based on the structural
interpretation to be discussed below.

Zhob (Muslimbagh) ophiolite zone.- The northern
zone is overlain by Zhob (Muslimbagh) ophiolites. These

- ophiolites composed of pillow basalts, sheeted dykes

represent pieces of oceanic crust (Asraruliah et al.,
1979; Abbas and Ahmad, 1979; Gansser, 1979; Farah
and Zaigham, 1979), tectonically emplaced on the
Sulaiman passive margin shelf and platform sequence
during the Paleocene to Eocene time (Allemann, 1979;
Otsuki et al., 1989).

Khojak flysch zone.- The Khojak flysch represents a
deep-water submarine clastic sediment fan. This fan,
probably analogous to the present day Indus fan, 'was
deposited on the oceanic crust mostly during Eocene to
Oligocene in response to the first deformation episode
of Himalayan orogeny (Lawrence and Khan, 1991).
Subsequently most of the deformation of the Khojak
flysch occurred in the Oligocene to Miocene, as
evidenced by an increase in seafloor spreading
velocities about 30 Ma (Lawrence and Khan, 1991).
Presently, itis found in the Makran Ranges and between
the Chaman fault and shelf sediments of the
Indo-Pakistan plate. Ophiolites are present along both
sides of the Khojak flysch. To the south and east are the
well known ophiolites of Waziristan, Muslimbagh, and
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Las-bela (Asrarullah et al., 1979; Delong and
Subhani,1979; Otsuki et al., 1989). To the north and
west, ophiolites are scattered along the Chaman fault,
in the Ras Koh (Hunting Survey Corporation, 1961), and
in the Kabul block (Lawrence and Khan, 1991; Khan et
al., 1991). Fragments of ophiolites along the Chaman
fault were probably emplaced during the late
Cretaceous/Paleocene contemporary with the Kandahar
andesitic arc (Lawrence et al., 1981b; Debon et al,,
1986).

Subsurface Data and
Depth to the Decollement

Extensive seismic reflection and borehole data from
the frontal part of the Sulaiman fold belt and the adjacent
foredeep (Figure 3) have been provided to the Oregon
State University by the Oil and Gas Development
Corporation of Pakistan (OGDC), the Hydrocarbon
Development Institute of Pakistan (HDIP), Amoco and
Texaco oil companies. The seismic profiles provide good
coverage from the southern Sulaiman foredeep and
extend about 160 km to the north into the fold-and-thrust
belt from the deformation front. Humayon et al. (1991)
provide seismic coverage from the eastern Sulaiman
foredeep.

The seismic profiles are used to resolve: (a) trend and
depth to the top of the crystalline basement to constrain
stratigraphic and tectonic thicknesses and Bouguer
gravity modelling (Jadoon, 1992); (b) the major
decollement; and (3) the geometry of structures along
balanced structural cross-section A-A’ in Figure 2. The
first two constraints are vital to resolve the geometry of
structures and style of deformation and are discussed
by Jadoon (1991a) in detail.

Seismic reflection lines and borehole data (Figure 3)
provide sufficient subsurface data to constrain the
Sulaiman foredeep and the southern zone. One of the
most important observations resulting from the study of
the composite seismic line (bold lines in Figure 3) from
the Mari well (line 834-SAJ-22) in the Sulaiman foredeep
to Kohlu (line W-16-EU) in the central Sulaiman is the
interpreted depth to the top of the crystalline basement.
Seismic data suggest that depth to the top of crystalline
basements is about 10 km at the deformation front. The
basement descends northwards with a gentle inclination
of about 2°-2.5° and is extrapolated to attain a depth of
about 20 km in the hinterland of the Sulaiman
fold-andthrust belt. The seismic reflection profiles show
that all the stratigraphic section is detached from the
hasement in the southernmost Sui and Loti anticlines
(81-L0-14, 81-L0-2 in Figure 3). Thus, the major
decollement is in Paleozoic rocks at the interface

between crystalline basement and the sedimentary
package at the deformation front.

BALANCED STRUCTURAL CROSS-SECTION
Section Balancing

Line length and area balancing techniques (Balley et
al., 1966: Dahlstrom, 1969; Gwinn, 1970; Elliot, 1982;
Woodward et al., 1989) were applied to the
cross-section (A-A’ in Figures 2 and 9). The southern 159
km long part of the cross-section is thoroughly
constrained by seismic reflection and well data and was
balanced by the line-length method except under the
frontal broad folds (Sui and Loti). This technique is
considered here to be invalid due to the ductility of
material in the core zones of these anticlines. The
northern 185 km of the cross-section north of kilometre
mark 159 primarily area-balanced (Figure 9), due to lack
of seismic data.

Surface and Subsurface Expression

Discussion along the 349 km long balanced structural
cross-section (A-A’ in Figure 2 and 9) is divided according
to the structural zones described earlier.

Sulaiman foredeep and the southern zone.— The
Sulaiman foreland constrained with seismic and
borehole data has been discussed by Jadoon (1991a),
Jadoon et al. 1992). This portion consists of broad
east-west trending, doubly plunging folds. The rocks
structurally uplifted to the surface in the cores of
anticlines, become progressively older toward the
hinterland. However, these exposed rocks everywhere
show a coherent stratigraphy that is not disrupted by
thrust faults (Figure 4). Boreholes in the frontal and
central Sulaiman Range (Tadri and Jandran) penetrated

.a normal stratigraphic sequence as deep as Jurassic.

These observations collectively imply that, towards the
hinterland, rocks are structurally uplifted from their
regional stratigraphic leve! by duplication along blind
thrust below the Cretaceous (Figure 5).

The surface and seismic expression of the frontal part
of the Sulaiman fold belt is of two broad (half wavelength
about 20 km), small amplitude (1-2 km}) anticlines (Sui
and Loti). Limb dips do not exceed 4° on Sui and 15° on
Loti (Figure 5). Nearly all the 10 km thick stratigraphic
sections are detached from the basement. These folds
are replaced by ramp and duplex structures with a
continuing extremely deep detachment level toward the
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north, starting with Pirkoh anticline. Major duplexing
dominates between a floor thrust just above crystalline
basement and a passive-roof thrust in Cretaceous shale
(Figure 5). Duplexing appears to be initiated when the
buckle folds reach a limiting amplitude. The Pirkoh,
Danda, and Kurdan anticlines are cored by a single
horse. The Tadri anticline and the Mari anticlinal zones
are cored by two horses. Tadri is fundamentally an
anticlinal stack.

The entire portion of this section underlain by
duplexes is topped by a passive-roof sequence (Figure
5). At and south of Tadri, faults do not cut the section
above Cretaceous rocks, and faultrelated folds
predominate in the exposed Paleogene rocks. The
surface structures (folds) in the passive-roof sequence
reflect the shape of the faultbend folds in the duplex
sequence (e.g. Pirkoh anticline). This means that the
roof sequence does not deform independently of the
duplex sequence south of Tadri anticline. The great
length of the passive-roof structure in the Sulaiman fold
belt remains a significant mechanical problem.

Central zone.- North of the Tadri syncline,
complicated structures appear at the surface (Figure 6).
These structures are foreland and hinterland verging
reverse faults, and associated small wavelength,
faulthbounded anticlines. Along these faults, mostly
Cretaceous rocks juxtapose Eocene rocks. At the
surface, these faults are of great lateral extent (10s of
km; Figure 6). The Andari backthrust that emerges from
the Tadri syncline with a backthrust sense of vergence
extends for about 170 km (Figures 2 and 9). Humayon
et al. (1991) recognized the backthrust sense of
vergence along the Andari fault in the eastern Sulaiman
Ranges and interpreted it to emerge from the
passive-roof thrust. Critical observation of seismic data
(Jadoon, 1991b; Jadoon et at., 1993) shows minor throw
(1-2 km) mostly of top Cretaceous, Paleocene, and
Eocene rocks along these faults (Figure 7). These
observations suggest that the faults are secondary
structures (out-of-sequence thrusts of Morley, 1986 and
1988), mostly restricted to the passive-roof sequence.
One exception is the Jandran backthrust that cuts
through the upper duplex horse (M1). Tight, short
wavelength anticlines associated with these faults are
interpreted as pop-ups (Mari pop-up zone) in the roof
sequence (Figures 6 and 7). Parry (1978) and Mitra
(1987), and Ahmed and McElroy (1991) have shown
similar structures in cross-sections from the
Appalachian foreland in West Virginia and the Himalayan
foreland in Kohat Plateau respectively. Active shallow
seismicity (about 5 km) in the central Sulaiman Range
(Quittmeyer et al., 1979, 1984; Kazmi, 1979), tilted
gravel beds, and landslides in the Mari pop-up zone
suggest that some of these faults may be active. This
interpretation suggests that north of the Tadri anticline,

structures (tight) in the roof-sequence are different from
the deep (relatively broad) structures in the duplex
sequence.,

Although the passive-roof sequence is disrupted by
reverse faults in the central zone, it is not emergent due
to minor throw along these secondary faults (Figure 7).
These out-of-sequence reverse faults may represent an
early stage in the development of one or more overstep
backthrusts emerging from the passive-roof thrust. This
suggests that multiple backthrusts which were proposed
to serve as a mechanism for the shortening strain in the
passive-roof sequence (Banks and Warburton, 1986) are
not present or are only incipiently present at the current
stage of the central Sulaiman deformation.

Northern zone.— Seismic data do not exist from the
northern zone. Basement and the decollement surface
(Figure 9) are extrapolated as they descend northwards
from the central and southern zone. The structural profile
(AA') intersects an east-west Bouguer gravity profile
(E-E") in the Loralai valley (Figure 2). Crystalline
basement along this Bouguer gravity profile (E-E' in
Figure 2) is extrapolated (Khurshid et al., 1992) by the
seismic reflection data from the eastern Sulaiman
foreland and associated foredeep (Humayon et al.,
1991). Depth to the crystalline basement at the
intersection of two profiles is about 18 km. Surface
geology is mostly from the Hunting Survey Corporation
(1961} at a scale of 1:253,440 and Bhatti et al. (1984)
at a scale of 1:25,000 for the Gumbaz area in Figure 8.
Geology was field checked by the first author where
possible during the field season in the fall of 1988 and
winter of 1990, The plot based on surface geology leaves
a space of more than 10 km thickness below the Loralai
and Zhob areas. This space is hypothetically filled by
duplexes of Jurassic and older rocks, analogous to those
from the southern and central zones (Figure 9).

Important structural elements of the northern zone are
a structural depression {Gumbaz in Figure 9), emergent
passive-roof sequence in the Loralai valley along a
passive-backthrust, Loralai triangle zone and the
Muslimbagh ophiolites emplaced over the marginal
facies (Figures 8 and 9). Triangle zone is a region
between extensive faults of opposing vergence (Gordy et
al.,, 1977). Such zones are reported from Canadian
Rockies (Bally et al., 1966; Jones, 1982; and Vann et
al., 1986), and the northern Potwar Plateau (Lillie et al.,
1987, Baker et al., 1988; and Jaswal, 1990). In the
active Sulaiman fold belt however, the triangle zone is
in the hinterland. This implies that the triangle zone
structures initially due to structural uplift may develop in
the hinterland and subsequently with increasing
shortening migrate towards the foreland.

The balanced section (A-A" in Figure 9) shows an intact
passive-roof sequence about 150 km long. Such a long,
continuous passive-roof sequence poses the problem of
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a mean to accommodate shortening strain in the roof
sequence. However, structures of similar magnitude are
reported in the literature from the Appalachians (Roeder
et al., 1978; Berg et al., 1980; Boyer and Elliot, 1982),
Papua New Guinea (Hobson, 1986); and the Brooks
Range, Alaska (Wallace and Hanks, 1990). Relatively
tight folds in the roof sequence (Hunting Survey
Corporation, 1961; Bhatti et al., 1984) in the northern
zone are interpreted as detachment folds in the
passive-roof seguence. These folds accommodate a
fraction of shortening in the roof sequence.

In the Loralai triangle zone of the Sulaiman fold belt,
massive, shallow water Jurassic (Chiltan) limestone
(Igbal and Shah, 1980) crops out at the surface in nearly
symmetrical anticlines (Figure 8). North of the Loralai
triangle zone, massive Chiltan limestone is replaced by
more distal, slope and rise facies (medium bedded
limestone and intercalated shales) of Jurassic and
Triassic age. The structure changes from a duplex
geometry to simple ramp-and-flat geometry, and is
dominated by detachment folding (box and kink folds;
see maps of Hunting Survey Corporation, 1961). It is
presumed that a fault with considerable shortening must
be present in the Loralai valley (Loralai thrust in Figure
8),'to emplace the more distal Jurassic facies and older
rocks against the shallow water Jurassic limestone. A
similar interpretation is suggested for this facies change
by Kazmi (1981). This part of the balanced section is
primarily the area balanced. Complex folds (Hunting
Survey Corporation, 1961) above the major flat {Z1)
south of the Zhob ophiolite is not shown because they
are too small for the scale of the cross-section (Figure
9). The Zhob thrust sheet (Z1) is overiain by Muslimbagh
ophiolites in the Zhob valley. Paleocene to early Eocene
emplacement of the ophiolites (Allemann, 1979; Otsuki
et al., 1989) over shelf strata records the first event of
collision along the passive margin. Subsequently, much
of the Khojak flysch was deposited and deformed during
the Eocene to Miocene, probably as a submarine fan on
oceanic crust of the closing Neo-Tethyes ocean
(Lawrence and Khan, 1991).

Palinspastic Restoration

The balanced and retrodeformed cross-section (Figure
9) have 2 pinlines, P1 and P5, starting in the Sulaiman
foredeep and ending at an arbitrary cutoff point at the
Muslimbagh allochthon, and three intermediate
reference lines, P2, P3, and P4. The northernmast point
is at the edge of early emplaced ophiolites and melange,
the shortening of which is not dealt with in this study.
These pin and reference lines are selected to reflect
variations of the seismic coverage, stratigraphy, and
other uncertainties along the balanced cross-section

(Figure 9A). P1, through the undeformed rocks, is in the
Sulaiman foredeep. P2 is through the M1 and M2 duplex
sheets at 159 km at the limit of the seismic coverage.
Thus P1 to P2 is the area with good subsurface control
and the most confident reconstruction. P3 is through the
footwall of the Z3 duplex sheet at the northemmaost limit
of exposure of massive (platform) Jurassic limestone in
the Loralai valley. P4 is through the footwall cutoff of Z2.
Buried rocks between P3 and P4 may include the
Jurassic transitional slope facies that are onlapped by
the Loralai thrust (Figure 8). There is no thickness control
on units in this area and constant thicknesses unlikely
shelf sediments are extrapolated in the reconstruction.
North of P4 shortening and structures are poorly
constrained and the P4 to P5 portion is included mainly
to show the possible complete section across the
reconstructed Mesozoic margin. Due to the multiple
uncertainties in the northern section, no effort has been
made in the retrodeformed section to include a realistic
continental margin geometry. The northern part of Figure:
9 is intended only for shortening estimates.

itis important to point out that the base of the Jurassic
limestone is picked to calculate the total shortening.
This horizon is part of the duplex structure that has never
been emergent or eroded except in the northern part of
the Loralai triangle zone (Figure 9A). Thus, the problem
of eroded section length uncertainties is negligible, as
little or no erosion has occurred. Thus, the
retrodeformed cross-section {Figure 9B) of this study
provides a maximum estimate of shortening. This is in
contrast to most shortening estimates from balanced
sections which are minimal estimates due to missing
sections along emergent faults (Coward and Butler,
1985).

The deformed section between the pin lines P1 to P5
(Figure A) is 349 km long. The frontal half part of the
section between km marks O to 159, P1 to P2, is
constrained by seismic reflection data (Jadoon et &l.,
1992; Jadoon et al., 1993) and is balanced by the
line-length method except frontal concentric folds. This
part restores to an undeformed length of 280 km for a
shortening of 121 km. The second part of the
cross-section, between kilometer marks 159 to 349, P2
to P5, is 190 km long and restores to an undeformed
length of 447 km, that gives maximum shortening of 257
km. This part is primarily area balanced maintaining the
stratigraphic thickness documented below Kohlu
syncline by seismic data and using the documented
thickness in the field for the section north of the Loralai.
All together the 349 km long deformed section across
the Sulaiman fold belt (Figure 9A) restores to a maximum
undeformed length of 727 km (Figure 9B), which gives a
maximum shortening of 378 km. Only a fraction of
shortening (<1 km) is accommodated by the broad
frontal folds (Sui and Loti), over a distance of about 55
km. Shortening within the passive-roof sequence is 20
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km. This is accommodated by surface faults and folds.
All additional shortening in the roof sequence is taken
up by emergent passive-backthrusts/ roof thrust in the
Loralai triangle zone in this interpretation.

The 52% shortening in the central portion of the
Sulaiman fold belt is similar to 50% in the Kohat Plateau
south of the Main Boundary thrust (McDougall and
Hussain, 1991). However, it is smaller than the about
60% shortening estimated along cross-section CC’ in
Figure 2 for the western Sulaiman (Banks and
Warburton, 1986). Smaller amount of shartening (52%)
along cross-section A-A’ compared to CC' (60%) (Figure
2) could be explained in two ways: (1) the central
Sulaiman is translated farther south onto the foreland,
that is, the length of the deformed section between the
pin lines is about 3.5 times greater in the central
Sulaiman Range (349 km : 100 km); (2) the Sulaiman
lobe along the edge of the Indian subcontinent {Figure
2) may experience variable shortening due to
transpression.

STRUCTURAL STYLE AND GEOMETRY

In this study the Sulaiman fold belt is interpreted to
have a passive-roof duplex style of deformation. This is
consistent with interpretations from the western (Banks
and Warburton, 1986) and eastern (Humayon et al.,
1994) Sulaiman Ranges. However, it is contrary to
simple ramp-andflat geometry for the evolution of the
Sulaiman fold belt (Bannert et al., 1989).

Duplex structures

Below the roof sequence, the deep, major structures
of the thrust system are duplexes. The retrodeformed
cross-section (Figure 9B) shows that the individual
duplex horses are of variable length and relative
displacement. This results in folds of variable symmetry,
geometry, and tightness in the foreland (Jadoon et &l.,
1992). The main structures are described below using
terminology from Dahlstrom (1970), Boyer and Elliot
(1982), Butler (1982), Suppe (1983); Banks and
Warburton (1986), Boyer (1986), Mitra (1986), and
Groshong and Usdansky (1988).

In the southern zone, Sui and Loti are broad,
concentric frontal folds (Dahlstrom, 1970) formed at the
tip of the decollement, primarily by buckle folds over the
ductile rocks along the detachment horizon. Liu and
Dixon (1990) and Dixon and Tirrul (1991) experimentally
produced such folds in front of the duplexes. These folds
are forelandward of ramp and duplex structures which
start with the Pirkoh anticline (Figure 9A). The Pirkch

anticline forms a significant topographic front. Much of
seismic activity from the southern zone (Quittmeyer et
al., 1979) is probably located along blind faults below
this topographic front. '

From Pirkoh to Tadri (Figures 9), the geometry of the
surface folds reflects the shape of the duplex related
faulthend folds at depth. From south to north, Pirkoh,
Danda, and Kurdan are interpreted as a faultbend fold,
overlap ramp anticline, and an intraplate fold,
respectively. Unlike Pirkoh and Danda, which have
foreland vergence, the intraplate Kurdan fold formed as
a result of displacement along a passive-backthrust
within the Kurdan duplex sheet (Jadoon et al., 1992).

Deep structures below the Tadri anticline and the
central zone are anticlinal stacks (overlapping ramp
anticlines). In each case space of about 8 km below the
roof sequence is filled by two duplex horses. Note the
maonoclinal dip of the roof sequence in front of M2 duplex
horse (Figure 9A). The foreland vergent monoclinal dip
of the M2 duplex horse could lock the hinterland vergent
passive propagation of the roof sequence. The
secondary structures at the surface between the Tadri
anticline to Kohlu syncline may then develop due to
increasing strain in this region. This zone of complicated
surface structures called as the Marri Bugti pop-up zone
(Jadoon et al., 1993) is similar to structures shown in
the roof-sequence in West Virginia of the Appalachian
forelandfold belt (Parry,1978; Mitra, 1987) and the
Kohat Plateau of Himalayan foreland system in Pakistan
(Ahmed and McElroy, 1991).

The northern zone has a planar-roofed duplex below
the Gumbaz structural depression and hinterland verging
duplexes farther north. The excess space between
decollement and roof sequence below the Gumbaz
structural depression does not require two duplex horses
to form an anticlinal stack. Instead it can be filled by a
single duplex horse (Figure 9). This suggests that the
Gumbaz structural depression in the roof sequence was
produced by a change in structural style from anticlinal
stacks in the central zone to faultbend folding in the
northern zone. The length of the M1 duplex horse and
displacement along this horse below the Gumbaz
structural depression is much larger than that on the
preceding duplex horses (Figure 9). This may be due to
presence of relatively weak decoupling (along salt?) that
resulted in greater translation and hence produced a
change in structural style as that weak surface was
overrun. Alternatively, relatively strong decoupling in the
central and southern zone may be due to a decrease in
depth of the decollement that steps up from a ductile
interface into the brittle /ductile transition.

To the north, a change in structural style from
planeroofed duplexes to hinterland dipping duplexes is
suggested. This change results from choices of ramp
spacing, relative displacement, and final position of the
D2, D3, and M1 duplexes (Figure 9). Figure 9 illustrates
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their relationship as the emplacement of a hanging wall
ramp of the D2 duplex (Garhar Ghar in Figure 9) over the
footwall flat of moderately north-dipping D3 that is itself
amplaced over the footwall ramp of the M1 (next duplex).
Thus, Garhar Ghar is an overlap anticline similar to
Danda to the south. At Loralai valley, the passive-roof
thrust emerges over a series of hinterland dipping
duplexes (L1, L2, and L3) to form a triangle zone
structure (Gordy et al., 1977; Price, 1981).

Passive-roof sequence

A passiveroof sequence remains stationary over a
duplex sequence. It was first described by Banks and
Warburton (1986) with example from the western
Sulaiman and Kirthar Ranges in Pakistan.
Subsequently, it was recognized from eastern (Humayon
et al., 1991) and frontal (Jadoon et al., 1992) Sulaiman
lobe. The duplex style of deformation with a continuous
overlap roof sequences extending over several duplex
horses are reported from the Brooks Range of Alaska
(Vann et al., 1986; Wallace and Hanks, 1990), from the
Appalachians (Geiser, 1988a and 1988b), and the
Papua, New Guinea, thrust belt (Hobson, 1986). A
continuous overlap roof sequence is geologically an
unrealistic solution. The Sulaiman lobe is one of the
clearest examples in which the apparently unbroken
surface sheet extends large distance toward the
hinterland. This study suggests a continuous
passive-roof sequence of about 150 km in the Sulaiman
fold belt of Pakistan (Figure 9A). A mechanical problem
with such geometries is how an equal amount of
shortening strain can be accommodated in both the roof
and duplex sequences. Various models involving
backthrusting. (Banks and Warburton, 19886), layer
parallel shortening (Geisser, 1988a and 1988b),
detachment folding (Wallace and Hanks, 1990) of the
roof sequence and/or passive behavior of the roof
sequence attempt to resolve this problem.

Boyer and Elliot (1982) reported a kinematic model
for the development of duplexes with floor and roof
thrusts with motion only towards the foreland (Figure
10A). This duplex geometry provides one logjcal solution
to explain the structurally duplicated orogenic wedges
whose surface expression lacks faults with significant
shortening on the ground. The model suggests large
displacement, forelandverging fault, along which roof
sequence is emergent to accommodate shortening
(Boyer and Elliot, 1982; Vann et al., 1986; Geiser,
1988h). Examples are the Jura and Swiss Plain, and the
Mackenzie Mountains area of Canada. As proposed, this
model involves no backthrust motion, however, if the roof
sequence moves forward more slowly than the duplexes,
a passive-backthrust component of motion can be

introduced. Another model suggests a superficial
decollement in the roof-sequence {Figure 10B) similar to
that in the main Brooks Range thrust plate south of the
Romanzof Mountains in Alaska (Vann et al., 1986). In
active fold and thrust belts, this may be recognized by
an anomalously thick roof sequence. This model
restricts backthrust motion to the leading portion of the
foreland system. Banks and Warburton (1986) proposed
"passive-roof duplex geometry” with several
overstep-backthrusts emerging from a passive-roof
thrust (upper detachment), all with a backthrust sense
of vergence. In each case the backthrust emerges from
the tip of a duplex. The emplacement of the duplex uplifts
and rotates the roof sequence passively without any
significant forward translation. Uplift and rotation in
rocks over the foreland propagating duplex horse creates
steep monoclinal dips to the roof sequence rocks at the
foredeep margin. As a result, the roof sequence
becomes emergent along a backthrust and is removed
primarily by erosion (Figure 10C). Very long preserved
roof sequences are precluded by this geometry.

None of the above mentioned processes appear to
operate as a main shortening mechanism for the long
passive-roof sequence of the central Sulaiman Range
(Figure 9). Instead of this 150 km long, intact
passive-roof sequence is emergent along a major
passive-roof thrust in the Loralai valley. This is the
longest passive-roof sequence we have found in the
literature (Hobson, 1986, shows about 120 km). No
significant break in this fault has been recognized from
its southern tip line to the Loralai valley which implies
that backthrust motion on similar fault must be
equivalent to the forethrust motion in the originally
underlying duplex sequence. The minimum relative
displacement on the passive-roof thrust under the roof
sequence is 106 km (Jadoon, 1991b). Thus, in the early
stages of structural development, a hindward emergent
continuous passive-roof sequence may extend over
several duplex horses (Figure 9A). North of Loralai, the
roof sequence has largely been removed by erosion and
is no longer a continuous sheet. How this motion is
accomplished mechanically remains a significant
problem and needs to be modelled.

The descriptive situation is a very long passive-roof
sequence that has an emergent backthrust at its
northern termination along which material has been
removed by erosion (Figure 10D). This is similar to Figure
10A in that both have an intact roof sequence over a
greater distance, but it is different from Figure 10A in
that the emergent fault is a passive-backthrust in the
hinterland of the Sulaiman fold belt instead of a foreland
verging fault in the foredeep basin. Mechanically, it could
pose serious problems if rugged topography is present
as this would make continued relative displacement of
the roof sequence difficult. However, the Sulaiman fold
belt may be an exception due to gentle (<1°) topography
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and the presence of very thick shale (Sembar Formation)

‘at the decollement horizon. More than 1700 m of
Sembar shale have been drilled in the Giandari well from
the Sulaiman foreland (Figure 2). This shale is
extensively distributed along the emergent Loralai
backthrust in the broad (>15 km wide) Loralai valiey
(Figure 8). The descriptive situation in Figure 10D could
be evaluated in context of critical wedge model (Davis et
al., 1983; Davis and Engelder, 1985) and Anderson’s
theory of fauiting.

Evolution of emergent overstep-backthrusts
in long roof sequences

The roof sequence in the Sulaiman lcbe does show
secondary hinterland and foreland verging faults and
associated pop-ups. Displacement along secondary
faults never exceeds more than 2-3 km. Due to minor
throw, the roof sequence nowhere becomes emergent
along these faults (Figure 7). An overstep backthrust is
one that emerges from the passive-roof thrust (upper
decollement) and does show considerable shortening
(Banks and Warburton, 1986; Figure 10C). The Mari
pop-up zone (Figures 6 and 7) occurs just south of the
Gumbaz structural depression and can be interpreted as
the early stages of development of an emergent
overstepbackthrust in this area, This would be the first
overstep-backthrust observable in the central Sulaiman
lobe as presently configured. Seismic control (Jadoon,
1991b; Jadoon et al., 1993) demonstrates that only the
Jandran fauit cuts into the duplex sequence, and even
it has only small displacement. The area is seismically
active, probably at least in part on the Jandran fault. This
structure is probably developing in response to the tight
Tadri syncline in the passive-roof sequence which
apparently locks the passive-backthrust. Secondary
thrusting, the pop-ups, probably occurs when increasing
strain exceeds the strength of the rocks in the locked
roof sequence. We suggest that these secondary faults
represent the early stages of development of an
overstep-backthrust that may eventually have
substantial out-of-sequence displacement.
Out-of-sequence structures are commonly interpreted
occurring in through the entire duplex wedge {Jaswal,
1990) in order to increase taper and thus driving force.
The Mari pop-up structures, as interpreted here, offer an
alternative source of out-of-sequence activity in the
interior of a thrust system.

Timing and Rate of Deformation

Deformation of the northwestern margin of the Indian
subcontinent, the future Sulaiman area, started by the

Paleocene to early Eocene emplacement of the
Muslimbagh ophiolites {Allemann, 1979; Otsuki et al.,
1989; Jadoon, 1992). This event is constrained by the
emplacement of ophiolites over Maastrichtian shelf
sediments and onlap of Eocene platform rocks
(Allemann, 1979; Otsuki et al., 1989). Emplacement of
the Muslimbagh ophiolites was followed by deposition
of the Khojak flysch on remaining oceanic lithosphere
between the Eocene and late Oligocene with the early
Himalayan uplift as the most likely sediment source
(Lawrence and Khan, 1991). Continued shortening in the
late Oligocene to early Miocene (25+5 Ma?) resulted in
the final closure of the ocean, the initiation of the
left-lateral strike-slip Chaman fault system, and
deformation of the Khojak flysch (Khan et al., 1991).
Shortening in the cover sediments of the Indian
subcontinent south of the Muslimbagh ophiolites
allochthon probably became significant during the
Miocene (20+5 Ma?) with the beginning of deposition of
the continental molasse deposits. Since then, about
378 km of shortening has occurred in the cover strata
of the Indian subcontinent (Figure 9). Ongoing, prograde
deformation consistently reworked the molasse strata
so that the center of deposition migrated to the south
and east. Presently, active deformation is suggested by
recent unconformities from the southern Sulaiman
Range (Tainsh et al., 1959) and local seismicity. Age
dating by magnetostratigraphy (Ahmad and Khan, 1990)
shows that continental Siwaliks, deposited between 0.7
Ma to 50,000 yr, are overlain by alluvial fan deposits.
The later are tilted along the eastern Sulaiman front.
Shortening estimates in the cover sediments of the
Sulaiman fold belt of about 378 km over 21 Ma suggest
a shortening rate of about ~18 mm/yr. This number
compares with shortening estimates of 314 mm/yr in’
the Salt Range/Potwar Plateau regions (Leathers, 1987,
Baker et al.,, 1988), and 1015 mm/yr in the
sub-Himalaya in India {Lyon-Caen and Molnar, 1985).
Further magnetostratigraphic studies in this area should
be very productive in providing more refined control on
the deformation chrenology.

The amount of shortening in the Sulaiman fold belt
represents about 50% of the average plate convergence
rate of about 37 mm/yr between the Indian subcontinent
and the Afghan block almost parallei to the Sulaiman
vector determined above (Minster et al., 1974; Minster
and Jordan, 1978; lJacob and Quittmeyer, 1979).
Continental basement is not found to be involved in the
deformation in the Sulaiman fold belt (Jadoon, 1992).
Therefore ductile deformation in metamorphosing
basement in the hinterland of the orogen is not yet
contributing to shortening. Additional shortening may be
accommodated by the left-lateral strike-slip Chaman
fault system. Khan et al. (1991) suggest 450+10 km of
left-lateral strike-slip displacement along the Chaman
fault over about 25 Ma, for a rate of about 18 mm/yr. If
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the Chaman vector is resolved into the component
parallel to the plate motion vector it is about 15 mm/yr.
Thus the sum of the Sulaiman (~18 mm//yr) and Chaman
(15 mm/yr) displacement rates of 33 mm/yr is closely
comparable to the plate rate of 37 mm/yr since Miocene.
Present estimates of shortening related to the
western Himalayas in northern Pakistan are 475500 km
(Coward and Butler, 1985), and 570 km (lzatt, 1990).
Malinconico (1989) approached the probiem of the
shortening with estimates of crustal volume and
suggested crustal shortening between 570 and 1,140
km. All of these are still less than the 2,000 km of
shortening since Eocene time calculated for the central
Himalaya/Tibitean Plateau region largely from
paleomagnetic data (Moinar, 1984: Patriat and Achache,
1984:; Klootwijk et al., 1985). The Himalayan collision
zone appear to show a part of the total shortening. The
additional shortening may be taken up by extrusion
tectonics along strike-slip faults and lose of section by
partial melting at the leading edge of the Indian
subcontinent (Molnar and Tapponier, 1975; Lyon-Caen
and Molnar, 1985; Hefu, 1986; Armijo et al., 1989).

Hydrocarbon Prospects

The Sulaiman fold-andthrust belt with over 60,000
km? of the exposed Paleogene to Triassic platform strata
is generally considered as a gas prone area. The 7 km
thick Paleogene to Paleozoic strata has potential
horizons for the generation and accumulation of
hydrocarbons (Raza et al., 1989a). Raza et al. (1989a)
based on detailed geochemical investigations evaluated
Mesozoic/Cenozoic strata for hydrocarbons prospect.
They suggest that sizeable amount of oil may be present
in the Sulaiman fold belt. This could be supported by
the occurrence of gas condensate (Dhodak well) and the
oil seepages from various places e.g. Khattan, Samach,
Spintangi from the western Sulaiman and Ragha Sar,
Mughai Kot, and Burzam (Drazinda area) from the
Sulaiman Range (Raza et al., 1989a and b).

The Sulaiman fold-and-thrust belt was scarcely
investigated. Detailed structural investigations are vital
for a successful exploration, evaluation, and exploitation
of the hydrocarbons. Recent structural studies has
conflicting ideas about the structural evolution of the
Sulaiman thrust system. One model suggests nappe
structures (Bannert et al., 1989) whereas the other
model suggests a passive-roof duplex geometry (Banks
and Warburton, 1986; Humayon et al., 1991; Jadoon,
1991a; Jadoon et al., 1992). The nappe structure model
could consider that the lower plate may be drilled for the
presently producing Cretaceous and younger horizons.
The duplex model rejects the presence of Cretaceous to
Eocene targets in the lower plate. The balanced section

(Figure 9) shows favourable structures consisting of
Jurassic and older rocks in the internal part of the thrust
system. Khan and Raza (1986) based on geothermai
gradient of 2.4°/100 m in the Jandran well suggest an
oil window at depth from 2,300 to 4,400 m. Similarly,
oil window in the Tadri well is at depth of 2,100 to 4,000
m. In both the cases an oil window is suggested below
the penetrated depth of the wells in the Jurassic and
older horizon. These observations for prospects in the
Jurassic are favoured by the organic geochemistry (Raza
et al., 1989a). The duplex model requires attention for
generating hydrocarbon prospects in the duplex
sequence (Jurassic limestone) in areas of smali surface
structures (Figures 4 and 5).

CONCLUSIONS

Surface and subsurface data have been integrated to
evaluate the structural form of the active Sulaiman lobe,
the underlying crustal variation, and the total shortening
in the cover sediments of the Indian subcontinent and
across the Indian/Afghan collision zone. The important
conclusions are summarized below.

(1) The style of deformation in the Sulaiman fold belt
is a passive-roof duplex geometry with a floor thrust at
the base of the wedge and a passive-roof thrust in
Cretaceous shales. Two broad (half wavelength about 20
km) folds (Sui and Loti) are located at the southern tip
of the decollement zone.

(2) A continuous passive-roof sequence is intact for
about 150 km northwards from the tip of the first duplex.
Eventually it becomes emergent along a
passive-backthrust in the Loralai valley, where majority
of the excess section has been removed by erosion.
Surface structures in the southern Sulaiman lobe are
fault related folds. In the central Sulaiman lobe,
out-of-sequence structures (secondary foreland and
hinterland verging reverse faults with minor throw of <2
km and associated pop-ups) are recognized. They may
represent an early stage of evolution of an
overstep-backthrust emerging from the upper
detachment (passive-roof thrust). A structural
depression and a triangle zone are the dominant
structures of the northern Sulaiman lobe. North of the
Loralai triangle zone, the duplex style of deformation is
replaced by ramp-andflat geometry. On the Loralai
thrust, Jurassic shallow water limestones are overridden
by deeper-water, more distal facies. This facies change
probably marks the old shelf edge.

(3) Structures in the duplex rocks, starting from the
foreland to the hinterland (Figure 9) are a fault-bend fold
(Pirkoh), overlapping ramp anticline (Danda), intrapiate
fold {Kurdan), anticlinal stacks (Tadri anticline and Mari
pop-up zone}, plane-roofed (Gumbaz structural
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depression), and hinterland dipping duplexes. Farther
north the duplex structure is poorly constrained, but is
adequately modelled by a simple flat-and-ramp
geometry.

(4) General chronology of thrusting is as follows: (a)
concentric buckle folding at the tip of the decolliement;
(b} the development of a passive-roof duplex; (c) foreland
propagation of the duplex; (d) normal flexural faults at
the frontal folds in the roof sequence and tear faults at
the margins; and (e) out-of-sequence (secondary)
thrusting. Existence of secondary structures may explain
the active shallow seismicity at the front and in the
central parts of the Sulaiman fold belts.

(5} The 349 km long balanced structurai cross-section
from the foreland northwards across the collision zone
restores to 727 km. This gives 378 km of shortening
related to Himalayan collision at the western terminus
of the Indian subcontinent.

(6) The sum of the Sulaiman (18mm/yr) and the
Chaman (15mm/yr) displacement rate of 33 mm/yr is
closely compareable to the plate rate of 37 mm/yr since
Miocene.

(7) The duplex model suggests that the producing
Cretaceous and Eocene horizons in the foreland may not
be drilling targets, in the lower plate, in the internal parts
of the Sulaiman fold-and-thrust belt, However, relatively
simple structures in the uplifted Cretaceous and younger
strata (roof sequence) may be recognized for their
petroleum prospects. The duplex model suggests to
consider Jurassic and older rocks (duplex) for
hydrocarbon potentials in the internal parts of the
Sulaiman thrust system.
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